A339686 a(n) = Sum_{d|n} 6^(d-1).
1, 7, 37, 223, 1297, 7819, 46657, 280159, 1679653, 10078999, 60466177, 362805091, 2176782337, 13060740679, 78364165429, 470185264735, 2821109907457, 16926661132171, 101559956668417, 609359750089711, 3656158440109669, 21936950700844039, 131621703842267137
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
A339686:= func< n | (&+[6^(d-1): d in Divisors(n)]) >; [A339686(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
-
Mathematica
Table[Sum[6^(d - 1), {d, Divisors[n]}], {n, 1, 23}] nmax = 23; CoefficientList[Series[Sum[x^k/(1 - 6 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
PARI
a(n) = sumdiv(n, d, 6^(d-1)); \\ Michel Marcus, Dec 13 2020
-
SageMath
def A339686(n): return sum(6^(k-1) for k in (1..n) if (k).divides(n)) [A339686(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024
Formula
G.f.: Sum_{k>=1} x^k / (1 - 6*x^k).
G.f.: Sum_{k>=1} 6^(k-1) * x^k / (1 - x^k).
a(n) ~ 6^(n-1). - Vaclav Kotesovec, Jun 05 2021