A339687 a(n) = Sum_{d|n} 7^(d-1).
1, 8, 50, 351, 2402, 16864, 117650, 823894, 5764851, 40356016, 282475250, 1977343950, 13841287202, 96889128064, 678223075300, 4747562333837, 33232930569602, 232630519768872, 1628413597910450, 11398895225729502, 79792266297729700, 558545864365759264
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
A339687:= func< n | (&+[7^(d-1): d in Divisors(n)]) >; [A339687(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
-
Mathematica
Table[Sum[7^(d - 1), {d, Divisors[n]}], {n, 1, 22}] nmax = 22; CoefficientList[Series[Sum[x^k/(1 - 7 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
PARI
a(n) = sumdiv(n, d, 7^(d-1)); \\ Michel Marcus, Dec 13 2020
-
SageMath
def A339687(n): return sum(7^(k-1) for k in (1..n) if (k).divides(n)) [A339687(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024
Formula
G.f.: Sum_{k>=1} x^k / (1 - 7*x^k).
G.f.: Sum_{k>=1} 7^(k-1) * x^k / (1 - x^k).
a(n) ~ 7^(n-1). - Vaclav Kotesovec, Jun 05 2021