cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339761 Number of (undirected) Hamiltonian paths in the 3 X n king graph.

Original entry on oeis.org

1, 48, 392, 4678, 43676, 406396, 3568906, 30554390, 254834078, 2085479610, 16791859330, 133416458104, 1048095087616, 8154539310958, 62918331433308, 481954854686434, 3668399080453520, 27766093432542984, 209120844634276158, 1568050593805721822
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A(start, goal, n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def B(n, k):
        m = k * n
        s = 0
        for i in range(1, m):
            for j in range(i + 1, m + 1):
                s += A(i, j, n, k)
        return s
    def A339761(n):
        return B(n, 3)
    print([A339761(n) for n in range(1, 11)])

Formula

G.f.: x*(1 + 33*x - 292*x^2 + 815*x^3 + 782*x^4 - 3649*x^5 - 4630*x^6 + 1517*x^7 + 3835*x^8 - 3822*x^9 - 5722*x^10 - 5418*x^11 - 7562*x^12 - 4808*x^13 - 240*x^14 + 720*x^15 + 216*x^16)/((1 - x)*(1 - 4*x - 15*x^2 - 8*x^3 - 6*x^4)^2*(1 - 6*x - 12*x^2 + 27*x^3 - 2*x^4 - 30*x^5 - 4*x^6 + 6*x^7)). - Andrew Howroyd, Jan 17 2022