cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339794 a(n) is the least integer k satisfying rad(k)^2 < sigma(k) and whose prime factors set is the same as the prime factors set of A005117(n+1).

Original entry on oeis.org

4, 9, 25, 18, 49, 80, 121, 169, 112, 135, 289, 361, 441, 352, 529, 416, 841, 360, 961, 891, 1088, 875, 1369, 1216, 1053, 1681, 672, 1849, 1472, 2209, 2601, 2809, 3025, 3249, 1856, 3481, 3721, 1984, 4225, 1584, 4489, 4761, 1960, 5041, 5329, 4736, 5929, 2496, 6241
Offset: 1

Views

Author

Michel Marcus, Dec 17 2020

Keywords

Comments

Equivalently, subsequence of terms of A339744 excluding terms whose prime factor set has already been encountered.
a(n) = A005117(n + 1)^2 when A005117(n + 1) is prime. Proof: if A005117(n + 1) is a prime p then rad(A005117(n + 1))^2 = rad(p)^2 = p^2 and so integers whose prime factors set is the same as the prime factors set of A005117(n + 1) = p are p^m where m >= 1. p^2 > sigma(p^1) = p + 1 but p^2 < sigma(p^2) = p^2 + p + 1. Q.E.D. - David A. Corneth, Dec 19 2020
From Bernard Schott, Jan 19 2021: (Start)
Indeed, a(n) satisfies the double inequality A005117(n+1) < a(n) <= A005117(n+1)^2.
It is also possible that a(n) = A005117(n+1)^2, even when A005117(n+1) is not prime; the smallest such example is for a(13) = 441 = 21^2 = A005117(14)^2. (End)

Examples

			   n  a(n) prime factor set
   1    4  [2]           A000079
   2    9  [3]           A000244
   3   25  [5]           A000351
   4   18  [2, 3]        A033845
   5   49  [7]           A000420
   6   80  [2, 5]        A033846
   7  121  [11]          A001020
   8  169  [13]          A001022
   9  112  [2, 7]        A033847
  10  135  [3, 5]        A033849
  11  289  [17]          A001026
  12  361  [19]          A001029
  13  441  [3, 7]        A033850
  14  352  [2, 11]       A033848
  15  529  [23]          A009967
  16  416  [2, 13]       A288162
  17  841  [29]          A009973
  18  360  [2, 3, 5]     A143207
		

Crossrefs

Cf. A000203 (sigma), A007947 (rad).
Cf. A005117 (squarefree numbers), A027748, A265668, A339744.
Subsequence: A001248 (squares of primes).

Programs

  • PARI
    u(n) = {my(fn=factor(n)[,1]); for (k = n, n^2, my(fk = factor(k)); if (fk[,1] == fn, if (factorback(fk[,1])^2 < sigma(fk), return (k));););}
    lista(nn) = {for (n=2, nn, if (issquarefree(n), print1(u(n), ", ");););}

Formula

a(n) <= A005117(n+1)^2. - David A. Corneth, Dec 19 2020