A339807 Irregular triangle read by rows: T(n,k) (n>=2, k>=1) is the number of strong digraphs on n nodes with k descents.
1, 2, 11, 5, 10, 154, 540, 581, 272, 49, 122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893, 3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649
Offset: 2
Examples
Triangle begins: 1; 2, 11, 5; 10, 154, 540, 581, 272, 49; 122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893; 3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649; ...
Links
- Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, arXiv:1909.01550 [math.CO], 20 Mar 2020.
Crossrefs
Programs
-
Mathematica
nn = 8; B[n_] := FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; g[z_] := Sum[(1 + u y)^Binomial[n, 2] z^n/FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]], {n, 0, nn}]; egf[eggf_] := Normal[Series[eggf, {z, 0, nn}]] /.Table[z^i -> z^i*B[i]/i!, {i, 1, nn + 1}]; Map[Drop[#, 1] &, Drop[Map[CoefficientList[#, u] &, Table[n!, {n, 0, nn}]CoefficientList[Series[-Log[egf[1/g[z]]], {z, 0, nn}], z] /. y -> 1], 2]] // Grid (* Geoffrey Critzer, Feb 12 2025 *)
Extensions
Row 2 added by N. J. A. Sloane, Dec 29 2020
Comments