A339884 Triangle read by rows: T(n, m) gives the number of partitions of n with m parts and parts from {1, 2, 3}.
1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 0, 2, 2, 2, 1, 1, 0, 0, 1, 3, 2, 2, 1, 1, 0, 0, 1, 2, 3, 2, 2, 1, 1, 0, 0, 0, 2, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 2, 4, 3, 3, 2, 2, 1, 1
Offset: 1
Examples
The triangle T(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... 1: 1 2: 1 1 3: 1 1 1 4: 0 2 1 1 5: 0 1 2 1 1 6: 0 1 2 2 1 1 7: 0 0 2 2 2 1 1 8: 0 0 1 3 2 2 1 1 9: 0 0 1 2 3 2 2 1 1 10: 0 0 0 2 3 3 2 2 1 1 11: 0 0 0 1 3 3 3 2 2 1 1 12: 0 0 0 1 2 4 3 3 2 2 1 1 13: 0 0 0 0 2 3 4 3 3 2 2 1 1 14: 0 0 0 0 1 3 4 4 3 3 2 2 1 1 15: 0 0 0 0 1 2 4 4 4 3 3 2 2 1 1 16: 0 0 0 0 0 2 3 5 4 4 3 3 2 2 1 1 17: 0 0 0 0 0 1 3 4 5 4 4 3 3 2 2 1 1 18: 0 0 0 0 0 1 2 4 5 5 4 4 3 3 2 2 1 1 19: 0 0 0 0 0 0 2 3 5 5 5 4 4 3 3 2 2 1 1 20: 0 0 0 0 0 0 1 3 4 6 5 5 4 4 3 3 2 2 1 1 ... Row n = 6: the partitions of 6 with number of parts m = 1,2, ...., 6, and parts from {1,2,3} are (in Abramowitz-Stegun order): [] | [],[],[3,3] | [],[1,2,3],[2^3] | [1^3,3],[1^2,2^2] | [1^4,2] | 1^6, giving 0, 1, 2, 2, 1, 1.
Links
- Louis Comtet, Advanced Combinatorics, Reidel (1974)
Crossrefs
Formula
Sum_{k=0..n} (-1)^k * T(n,k) = A291983(n). - Alois P. Heinz, Feb 01 2021
G.f.: 1/((1-u*t)*(1-u*t^2)*(1-u*t^3)). [Comtet page 97 [2c]]. - R. J. Mathar, May 27 2025
Comments