cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339884 Triangle read by rows: T(n, m) gives the number of partitions of n with m parts and parts from {1, 2, 3}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 0, 2, 2, 2, 1, 1, 0, 0, 1, 3, 2, 2, 1, 1, 0, 0, 1, 2, 3, 2, 2, 1, 1, 0, 0, 0, 2, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 2, 4, 3, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jan 31 2021

Keywords

Comments

Row sums give A001399(n), for n >= 1.
One could add the column [1,repeat 0] for m = 0 starting with n >= 0.

Examples

			The triangle T(n,m) begins:
  n\m  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
  1:   1
  2:   1 1
  3:   1 1 1
  4:   0 2 1 1
  5:   0 1 2 1 1
  6:   0 1 2 2 1 1
  7:   0 0 2 2 2 1 1
  8:   0 0 1 3 2 2 1 1
  9:   0 0 1 2 3 2 2 1 1
  10:  0 0 0 2 3 3 2 2 1  1
  11:  0 0 0 1 3 3 3 2 2  1  1
  12:  0 0 0 1 2 4 3 3 2  2  1  1
  13:  0 0 0 0 2 3 4 3 3  2  2  1  1
  14:  0 0 0 0 1 3 4 4 3  3  2  2  1  1
  15:  0 0 0 0 1 2 4 4 4  3  3  2  2  1  1
  16:  0 0 0 0 0 2 3 5 4  4  3  3  2  2  1  1
  17:  0 0 0 0 0 1 3 4 5  4  4  3  3  2  2  1  1
  18:  0 0 0 0 0 1 2 4 5  5  4  4  3  3  2  2  1  1
  19:  0 0 0 0 0 0 2 3 5  5  5  4  4  3  3  2  2  1  1
  20:  0 0 0 0 0 0 1 3 4  6  5  5  4  4  3  3  2  2  1  1
  ...
Row n = 6: the partitions of 6 with number of parts m = 1,2, ...., 6, and parts from {1,2,3} are (in Abramowitz-Stegun order): [] | [],[],[3,3] | [],[1,2,3],[2^3] | [1^3,3],[1^2,2^2] | [1^4,2] | 1^6, giving 0, 1, 2, 2, 1, 1.
		

Crossrefs

Cf. A001399, A008284 (all parts), A145362 (parts 1, 2), A232539 (parts <=4), A291983.
Compositions: A007818, A030528 (parts 1, 2), A078803 (parts 1, 2, 3).

Formula

Sum_{k=0..n} (-1)^k * T(n,k) = A291983(n). - Alois P. Heinz, Feb 01 2021
G.f.: 1/((1-u*t)*(1-u*t^2)*(1-u*t^3)). [Comtet page 97 [2c]]. - R. J. Mathar, May 27 2025