A339698 Primes of the form p^2 - p*q + q^2, where p and q are consecutive primes.
7, 19, 3163, 23743, 28927, 70783, 141403, 198943, 223837, 265333, 283267, 329503, 1136383, 1223263, 1254427, 1488427, 2238043, 2421163, 3625243, 3904603, 4709143, 4884127, 5216683, 5784133, 7376683, 8065627, 8797183, 10660333, 11242717, 12348223, 16613803, 18594019, 19202167, 19999027
Offset: 1
Keywords
Examples
a(2) = 19 = 3^2 - 3*5 + 5^2 is the only prime obtained with a pair of twin primes: (3, 5). - _Bernard Schott_, Dec 23 2020
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 100 terms from Zak Seidov)
Programs
-
Mathematica
Select[Map[#1^2 - #1 #2 + #2^2 & @@ # &, Partition[Prime@ Range[610], 2, 1]], PrimeQ] (* Michael De Vlieger, Dec 13 2020 *)
-
PARI
forprime(p=1, 1e4, my(q=nextprime(p+1), x=p^2-p*q+q^2); if(ispseudoprime(x), print1(x, ", "))) \\ Felix Fröhlich, Dec 14 2020
-
PARI
first(n) = { my(q = 2, p, res = vector(n), t = 0); forprime(p = 3, oo, c = p^2 - p*q + q^2; if(isprime(c), t++; res[t] = c; if(t >= n, return(res) ) ); q = p; ) } \\ David A. Corneth, Dec 19 2020
Comments