cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340001 Number of ways prime(n) is a sum of five distinct primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 5, 6, 11, 14, 16, 25, 29, 39, 57, 68, 75, 88, 92, 109, 169, 198, 235, 240, 322, 331, 379, 437, 497, 565, 635, 634, 803, 798, 896, 888, 1091, 1328, 1477, 1444, 1616, 1753, 1730, 2080, 2262, 2452, 2627, 2588, 2790, 3043, 3004, 3535
Offset: 1

Views

Author

Michel Lagneau, Dec 26 2020

Keywords

Comments

Conjecture: all primes >= 43 are the sum of five distinct primes.
The sequence of the prime numbers that are the sum of five distinct prime numbers begins with 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, ...
The primes in the sequence are 2, 5, 11, 29, 109, 331, 379, 1091, 1753, ...
The squares in the sequence are 0, 1, 16, 25, 169, 1444, ...

Examples

			a(14) = 1 because prime(14) = 43 = 3 + 5 + 7 + 11 + 17.
a(17) = 5 because prime(17) = 59 = 3 + 5 + 7 + 13 + 31 = 3 + 5 + 11 + 17 + 23 = 3 + 7 + 13 + 17 + 19 = 5 + 7 + 11 + 13 + 23 = 5 + 7 + 11 + 17 + 19.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; series(`if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+(p-> `if`(p>n, 0,
           x*b(n-p, i-1)))(ithprime(i)))), x, 6)
        end:
    a:= n-> coeff(b(ithprime(n), n), x, 5):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 30 2020
  • Mathematica
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1,
         If[i < 1, 0, b[n, i - 1] + Function[p, If[p > n, 0,
         x*b[n - p, i - 1]]][Prime[i]]]], {x, 0, 6}];
    a[n_] := SeriesCoefficient[b[Prime[n], n], {x, 0, 5}];
    Array[a, 100] (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[p,{5}],AllTrue[#,PrimeQ]&&Length[Union[#]]==5&]],{p,Prime[Range[70]]}] (* Harvey P. Dale, Jul 07 2024 *)

Formula

a(n) = A219199(A000040(n)).
a(n) = [x^prime(n)*y^5] Product_{i>=1} (1+x^prime(i)*y). - Alois P. Heinz, Dec 30 2020