A340001 Number of ways prime(n) is a sum of five distinct primes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 5, 6, 11, 14, 16, 25, 29, 39, 57, 68, 75, 88, 92, 109, 169, 198, 235, 240, 322, 331, 379, 437, 497, 565, 635, 634, 803, 798, 896, 888, 1091, 1328, 1477, 1444, 1616, 1753, 1730, 2080, 2262, 2452, 2627, 2588, 2790, 3043, 3004, 3535
Offset: 1
Keywords
Examples
a(14) = 1 because prime(14) = 43 = 3 + 5 + 7 + 11 + 17. a(17) = 5 because prime(17) = 59 = 3 + 5 + 7 + 13 + 31 = 3 + 5 + 11 + 17 + 23 = 3 + 7 + 13 + 17 + 19 = 5 + 7 + 11 + 13 + 23 = 5 + 7 + 11 + 17 + 19.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..3000
- Wikipedia, Goldbach's weak conjecture
Programs
-
Maple
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+(p-> `if`(p>n, 0, x*b(n-p, i-1)))(ithprime(i)))), x, 6) end: a:= n-> coeff(b(ithprime(n), n), x, 5): seq(a(n), n=1..100); # Alois P. Heinz, Dec 30 2020
-
Mathematica
b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + Function[p, If[p > n, 0, x*b[n - p, i - 1]]][Prime[i]]]], {x, 0, 6}]; a[n_] := SeriesCoefficient[b[Prime[n], n], {x, 0, 5}]; Array[a, 100] (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[p,{5}],AllTrue[#,PrimeQ]&&Length[Union[#]]==5&]],{p,Prime[Range[70]]}] (* Harvey P. Dale, Jul 07 2024 *)
Formula
a(n) = [x^prime(n)*y^5] Product_{i>=1} (1+x^prime(i)*y). - Alois P. Heinz, Dec 30 2020
Comments