cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340128 a(n) = (n*prime(n)) mod prime(n+1).

Original entry on oeis.org

2, 1, 1, 6, 3, 10, 5, 14, 4, 11, 8, 34, 17, 38, 16, 22, 27, 26, 66, 33, 32, 78, 40, 2, 1, 51, 106, 53, 110, 88, 7, 82, 73, 107, 81, 98, 104, 15, 112, 118, 99, 153, 107, 21, 109, 81, 105, 35, 131, 33, 172, 137, 223, 190, 196, 202, 157, 206, 45, 163, 269, 53
Offset: 1

Views

Author

Simon Strandgaard, Jan 15 2021

Keywords

Examples

			a(1) = (prime(1) * 1) mod prime(1+1) =  2 * 1 mod  3 = 2,
a(2) = (prime(2) * 2) mod prime(2+1) =  3 * 2 mod  5 = 1,
a(3) = (prime(3) * 3) mod prime(3+1) =  5 * 3 mod  7 = 1,
a(4) = (prime(4) * 4) mod prime(4+1) =  7 * 4 mod 11 = 6,
a(5) = (prime(5) * 5) mod prime(5+1) = 11 * 5 mod 13 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[n*Prime[n],Prime[n+1]],{n,62}] (* Stefano Spezia, Jan 17 2021 *)
  • PARI
    a(n) = (prime(n)*n) % prime(n+1); \\ Michel Marcus, Jan 20 2021
  • Ruby
    require 'prime'
    values = []
    primes = Prime.first(20)
    primes.each_index do |n|
        next if n < 1
        values << (primes[n-1] * n) % primes[n]
    end
    p values