A340157 Numbers m such that numbers m, m + 1, m + 2 and m + 3 have k, 2k, 3k and 4k divisors respectively.
421, 3013, 5029, 5223, 5245, 5893, 6487, 10533, 11911, 14677, 17173, 23077, 23573, 24613, 25141, 25213, 27637, 27973, 28357, 30661, 32407, 34117, 37477, 38282, 39751, 43495, 45973, 47365, 48423, 50821, 50965, 53413, 53989, 54421, 55141, 56103, 57877, 58165
Offset: 1
Keywords
Examples
tau(421) = 2, tau(422) = 4, tau(423) = 6, tau(424) = 8.
Programs
-
Magma
[m: m in [1..10^5] | #Divisors(m) eq #Divisors(m + 1)/2 and #Divisors(m) eq #Divisors(m + 2)/3 and #Divisors(m) eq #Divisors(m + 3)/4]
-
Mathematica
Select[Range[60000], Equal @@ (DivisorSigma[0, # + {0, 1, 2, 3}]/{1, 2, 3, 4}) &] (* Amiram Eldar, Dec 30 2020 *)
-
PARI
isok(m, n=4) = {my(k=numdiv(m)); for (i=1, n-1, if (numdiv(m+i) != (i+1)*k, return (0));); return(1);} \\ Michel Marcus, Dec 30 2020
Comments