cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340166 a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - sin(i*Pi/(2*n))^2 * sin(j*Pi/(2*n))^2).

Original entry on oeis.org

1, 12, 17745, 2958176256, 54090331699622625, 107181043200192494332800000, 22868509031094388112997259982567521313, 523389340935243821042846225254323436248483571433472
Offset: 1

Views

Author

Seiichi Manyama, Dec 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^(2*(n-1)^2) * Product[Product[1 - Sin[i*Pi/(2*n)]^2 * Sin[j*Pi/(2*n)]^2, {i, 1, n-1}], {j, 1, n-1}], {n, 1, 10}] // Round (* Vaclav Kotesovec, Dec 31 2020 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*(n-1)^2)*prod(i=1, n-1, prod(j=1, n-1, 1-(sin(i*Pi/(2*n))*sin(j*Pi/(2*n)))^2)))}

Formula

a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - cos(i*Pi/(2*n))^2 * cos(j*Pi/(2*n))^2).
a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - sin(i*Pi/(2*n))^2 * cos(j*Pi/(2*n))^2).
a(n) ~ Gamma(1/4) * exp(8*G*n^2/Pi) / (Pi^(3/4) * sqrt(n) * 2^(6*n - 2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 05 2021