1, 1, 4, 208, 121856, 772189440, 51989627289600, 36837279603595907072, 273129993621426778551615488, 21114078836429317912110529666154496, 16975032309392309949804839529585109326888960
Offset: 0
A340291
a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - cos(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).
Original entry on oeis.org
1, 15, 32625, 8238791743, 230629380093001665, 703130165949449759361247759, 231459008314298532714943209968328640625, 8186710889725936196671113787217620194601044287109375
Offset: 0
-
Table[2^(4*n^2) * Product[Product[1 - Cos[j*Pi/(2*n+1)]^2 * Cos[k*Pi/(2*n+1)]^2, {j, 1, n}], {k, 1, n}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 03 2021 *)
-
default(realprecision, 120);
{a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))}
A340292
a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * sin(k*Pi/(2*n+1))^2).
Original entry on oeis.org
1, 7, 4961, 371647151, 2952717950351617, 2489597262406609716450871, 222812636926792555435326125877303201, 2116840405025957772469476908228785308996001314527, 2134958300495920487325052422663717579194357002081033470045923329
Offset: 0
-
Table[2^(4*n^2) * Product[Product[1 - Sin[j*Pi/(2*n + 1)]^2 * Sin[k*Pi/(2*n + 1)]^2, {k, 1, n}], {j, 1, n}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 04 2021 *)
-
default(realprecision, 120);
{a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(sin(j*Pi/(2*n+1))*sin(k*Pi/(2*n+1)))^2)))}
A340295
a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).
Original entry on oeis.org
1, 13, 18281, 2732887529, 43384923739812577, 73125714588602035608260981, 13085551252412040683513520733767180041, 248596840858215958581954513797323868183183928594833
Offset: 0
-
Table[Resultant[ChebyshevT[4*n+2, x/2], ChebyshevT[4*n+2, I*x/2], x]^(1/4) / 2^n, {n, 0, 10}] (* Vaclav Kotesovec, Jan 04 2021 *)
-
default(realprecision, 120);
{a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(sin(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))}
-
{a(n) = sqrtint(sqrtint(polresultant(polchebyshev(4*n+2, 1, x/2), polchebyshev(4*n+2, 1, I*x/2))))/2^n}
A340427
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = 4^(2*(n-1)*(k-1)) * Product_{a=1..n-1} Product_{b=1..k-1} (1 - sin(a*Pi/(2*n))^2 * sin(b*Pi/(2*k))^2).
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 140, 140, 1, 1, 1632, 17745, 1632, 1, 1, 19024, 2227120, 2227120, 19024, 1, 1, 221760, 279215849, 2958176256, 279215849, 221760, 1, 1, 2585024, 35001302700, 3909096873216, 3909096873216, 35001302700, 2585024, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
1, 12, 140, 1632, 19024, ...
1, 140, 17745, 2227120, 279215849, ...
1, 1632, 2227120, 2958176256, 3909096873216, ...
1, 19024, 279215849, 3909096873216, 54090331699622625, ...
-
default(realprecision, 120);
{T(n, k) = round(4^(2*(n-1)*(k-1))*prod(a=1, n-1, prod(b=1, k-1, 1-(sin(a*Pi/(2*n))*sin(b*Pi/(2*k)))^2)))}
A340167
a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 + sin(i*Pi/(2*n))^2 * sin(j*Pi/(2*n))^2).
Original entry on oeis.org
1, 20, 153425, 450075709440, 504979178328238519521, 216703205118496785026106198144000, 35568160616301682717925992221900586646216066081, 2232861039051291914755952483706805051795013026559178904468193280
Offset: 1
-
Table[4^(2*(n-1)^2) * Product[Product[1 + Sin[i*Pi/(2*n)]^2 * Sin[j*Pi/(2*n)]^2, {i, 1, n-1}], {j, 1, n-1}], {n, 1, 10}] // Round (* Vaclav Kotesovec, Dec 31 2020 *)
-
default(realprecision, 120);
{a(n) = round(4^(2*(n-1)^2)*prod(i=1, n-1, prod(j=1, n-1, 1+(sin(i*Pi/(2*n))*sin(j*Pi/(2*n)))^2)))}
A340352
Number of spanning trees of odd Aztec diamond OD_n.
Original entry on oeis.org
1, 192, 4542720, 12116689944576, 3544863978266468352000, 112387469554685044937510092800000, 383669915612621265759587438135691539652804608, 140496256399491641572818822014023027580848616806252629983232
Offset: 1
-
default(realprecision, 120);
{a(n) = round(4^(2*(n-1)*n)*prod(j=1, n-1, prod(k=1, n-1, 1-(sin(j*Pi/(2*n))*sin(k*Pi/(2*n)))^2)))}
A071102
Determinant of KK* where K is Kasteleyn-Percus matrix for fool's diamond of order n.
Original entry on oeis.org
1, 2, 15, 384, 32625, 9085440, 8238791743, 24233379889152
Offset: 1
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 27).
Comments