cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340166 a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - sin(i*Pi/(2*n))^2 * sin(j*Pi/(2*n))^2).

Original entry on oeis.org

1, 12, 17745, 2958176256, 54090331699622625, 107181043200192494332800000, 22868509031094388112997259982567521313, 523389340935243821042846225254323436248483571433472
Offset: 1

Views

Author

Seiichi Manyama, Dec 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^(2*(n-1)^2) * Product[Product[1 - Sin[i*Pi/(2*n)]^2 * Sin[j*Pi/(2*n)]^2, {i, 1, n-1}], {j, 1, n-1}], {n, 1, 10}] // Round (* Vaclav Kotesovec, Dec 31 2020 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*(n-1)^2)*prod(i=1, n-1, prod(j=1, n-1, 1-(sin(i*Pi/(2*n))*sin(j*Pi/(2*n)))^2)))}

Formula

a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - cos(i*Pi/(2*n))^2 * cos(j*Pi/(2*n))^2).
a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - sin(i*Pi/(2*n))^2 * cos(j*Pi/(2*n))^2).
a(n) ~ Gamma(1/4) * exp(8*G*n^2/Pi) / (Pi^(3/4) * sqrt(n) * 2^(6*n - 2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 05 2021

A340350 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + sin(x)^2*sin(y)^2) dy dx.

Original entry on oeis.org

4, 9, 5, 3, 1, 6, 6, 1, 8, 6, 9, 2, 1, 2, 3, 3, 6, 4, 3, 0, 2, 9, 6, 5, 0, 4, 0, 4, 1, 1, 6, 1, 0, 4, 7, 5, 8, 8, 7, 1, 7, 8, 8, 4, 1, 7, 6, 7, 9, 7, 4, 5, 1, 8, 2, 4, 6, 4, 7, 4, 5, 9, 3, 4, 1, 1, 2, 3, 7, 7, 4, 0, 6, 1, 2, 4, 7, 1, 1, 3, 6, 1, 4, 3, 4, 5, 6, 5, 3, 5, 0, 3, 2, 6, 6, 3, 7, 5, 2, 8, 7, 7, 9, 2, 3, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2021

Keywords

Examples

			0.49531661869212336430296504041161047588717884176797451824647459341123774...
		

Crossrefs

Programs

  • Maple
    evalf(Pi * Integrate(log((1 + sqrt(1 + sin(x)^2))/2), x = 0..Pi/2), 120);
  • Mathematica
    RealDigits[N[Pi*Integrate[Log[(1 + Sqrt[1 + Sin[x]^2])/2], {x, 0, Pi/2}], 100]][[1]]
  • PARI
    Pi * intnum(x = 0, Pi/2, log((1 + sqrt(1 + sin(x)^2))/2))

Formula

Equals Pi * Integral_{x=0..Pi/2} log((1 + sqrt(1 + sin(x)^2))/2) dx.
Equals limit_{n->infinity} Pi^2 * (log(A340165(n)) / (2*n^2) - log(2)).
Equals limit_{n->infinity} Pi^2 * (log(A340167(n)) / (4*n^2) - log(2)).

A340165 a(n) = 4^((n-2)*(n-1)) * Product_{1<=i

Original entry on oeis.org

1, 1, 19, 7056, 51251277, 7280323311888, 20225477546584790663, 1098876823994281426921193472, 1167619533875635661974056722756222809, 24263631353490502503207804571072304043237024000
Offset: 1

Views

Author

Seiichi Manyama, Dec 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^((n-2)*(n-1)) * Product[Product[1 + Sin[i*Pi/(2*n)]^2 * Sin[j*Pi/(2*n)]^2, {i, 1, j-1}], {j, 2, n-1}], {n, 1, 12}] // Round (* Vaclav Kotesovec, Dec 31 2020 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^((n-2)*(n-1))*prod(j=2, n-1, prod(i=1, j-1, 1+(sin(i*Pi/(2*n))*sin(j*Pi/(2*n)))^2)))}

Formula

a(n) = 4^((n-2)*(n-1)) * Product_{1<=i
a(n) ~ 2^(2*n^2 - 3*n + 35/8) * (1 - sqrt(2*sqrt(2)-2))^n * exp(2*A340350*n^2/Pi^2). - Vaclav Kotesovec, Jan 05 2021
Showing 1-3 of 3 results.