A340425
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) is the number of spanning trees of odd Aztec rectangle of order (n, k).
Original entry on oeis.org
1, 4, 4, 16, 192, 16, 64, 8960, 8960, 64, 256, 417792, 4542720, 417792, 256, 1024, 19480576, 2280570880, 2280570880, 19480576, 1024, 4096, 908328960, 1143668117504, 12116689944576, 1143668117504, 908328960, 4096
Offset: 1
Square array begins:
1, 4, 16, 64, 256, ...
4, 192, 8960, 417792, 19480576, ...
16, 8960, 4542720, 2280570880, 1143668117504, ...
64, 417792, 2280570880, 12116689944576, 64046643170770944, ...
256, 19480576, 1143668117504, 64046643170770944, 3544863978266468352000, ...
- Mihai Ciucu, Matchings and applications. Department of Mathematics, Indiana University, Bloomington, IN 47405. See Lecture 12.
-
default(realprecision, 120);
{T(n,k) = round(4^(2*n*k-n-k)*prod(a=1, n-1, prod(b=1, k-1, 1-(sin(a*Pi/(2*n))*sin(b*Pi/(2*k)))^2)))}
-
# Using graphillion
from graphillion import GraphSet
def make_OD_nk(n, k):
n += 1
k += 1
grids = []
s = k * n
for i in range(1, k * n, k):
for j in range(1, k):
a, b = i + j - 1, i + j
c = s + a
if i > 1:
grids.extend([(c - k, a), (c - k, b)])
if i < k * (n - 1) + 1:
grids.extend([(c, a), (c, b)])
return grids
def A340425(n, k):
universe = make_OD_nk(n, k)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A340425(j + 1, i - j + 1) for i in range(7) for j in range(i + 1)])
A340428
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - sin(a*Pi/(2*n+1))^2 * sin(b*Pi/(2*k+1))^2).
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 61, 61, 1, 1, 547, 4961, 547, 1, 1, 4921, 432461, 432461, 4921, 1, 1, 44287, 38484961, 371647151, 38484961, 44287, 1, 1, 398581, 3445022461, 330435708793, 330435708793, 3445022461, 398581, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 7, 61, 547, 4921, ...
1, 61, 4961, 432461, 38484961, ...
1, 547, 432461, 371647151, 330435708793, ...
1, 4921, 38484961, 330435708793, 2952717950351617, ...
-
default(realprecision, 120);
{T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(sin(a*Pi/(2*n+1))*sin(b*Pi/(2*k+1)))^2)))}
A340430
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - cos(a*Pi/(2*n+1))^2 * cos(b*Pi/(2*k+1))^2).
Original entry on oeis.org
1, 1, 1, 1, 15, 1, 1, 209, 209, 1, 1, 2911, 32625, 2911, 1, 1, 40545, 5015009, 5015009, 40545, 1, 1, 564719, 770100001, 8238791743, 770100001, 564719, 1, 1, 7865521, 118247646001, 13441754883649, 13441754883649, 118247646001, 7865521, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 15, 209, 2911, 40545, ...
1, 209, 32625, 5015009, 770100001, ...
1, 2911, 5015009, 8238791743, 13441754883649, ...
1, 40545, 770100001, 13441754883649, 230629380093001665, ...
-
default(realprecision, 120);
{T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(cos(a*Pi/(2*n+1))*cos(b*Pi/(2*k+1)))^2)))}
A340432
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - sin(a*Pi/(2*n+1))^2 * cos(b*Pi/(2*k+1))^2).
Original entry on oeis.org
1, 1, 1, 1, 13, 1, 1, 121, 181, 1, 1, 1093, 18281, 2521, 1, 1, 9841, 1690781, 2803921, 35113, 1, 1, 88573, 152963281, 2732887529, 430503601, 489061, 1, 1, 797161, 13755675781, 2555011015201, 4447515497881, 66102491401, 6811741, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 13, 121, 1093, 9841, ...
1, 181, 18281, 1690781, 152963281, ...
1, 2521, 2803921, 2732887529, 2555011015201, ...
1, 35113, 430503601, 4447515497881, 43384923739812577, ...
-
default(realprecision, 120);
{T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(sin(a*Pi/(2*n+1))*cos(b*Pi/(2*k+1)))^2)))}
Showing 1-4 of 4 results.