A185442
Triangle T(n,k), n>=1, 0<=k<=2n(n+1), read by rows: row n gives the coefficients of the chromatic polynomial of the Aztec diamond graph of order n, highest powers first.
Original entry on oeis.org
1, -4, 6, -3, 0, 1, -16, 120, -555, 1755, -3978, 6588, -7965, 6885, -4050, 1458, -243, 0, 1, -36, 630, -7127, 58476, -370128, 1876942, -7818056, 27208798, -80059990, 200769740, -431267475, 795531116, -1260437072, 1711682175, -1983112401, 1945239399, -1597006926, 1079055243, -585362106, 245489859, -74816136, 14762007, -1416933, 0
Offset: 1
2 example graphs: o-o
. | |
. o-o-o-o
. | | | |
. o-o o-o-o-o
. | | | |
. o-o o-o
Order: 1 2
Vertices: 4 12
Edges: 4 16
The Aztec diamond graph of order 1 is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1, -4, 6, -3, 0;
1, -16, 120, -555, 1755, -3978, 6588, ...
1, -36, 630, -7127, 58476, -370128, 1876942, ...
1, -64, 2016, -41639, 633851, -7578762, 74074918, ...
1, -100, 4950, -161659, 3917248, -75096624, 1186008180, ...
1, -144, 10296, -487283, 17170275, -480406458, 11115470152, ...
...
A340139
a(n) = 4^((n-2)*(n-1)) * Product_{1<=i
Original entry on oeis.org
1, 1, 13, 1904, 3016365, 50771120400, 8993476465721657, 16670531837245286776832, 322175275214070402711647486361, 64754609334534873770923002355900227840
Offset: 1
-
Table[4^((n-2)*(n-1)) * Product[Product[1 - Sin[i*Pi/(2*n)]^2 * Sin[j*Pi/(2*n)]^2, {i, 1, j-1}], {j, 2, n-1}], {n, 1, 12}] // Round (* Vaclav Kotesovec, Dec 31 2020 *)
-
default(realprecision, 120);
{a(n) = round(4^((n-2)*(n-1))*prod(j=2, n-1, prod(i=1, j-1, 1-(sin(i*Pi/(2*n))*sin(j*Pi/(2*n)))^2)))}
A340176
Number of spanning trees in the halved Aztec diamond HMD_n.
Original entry on oeis.org
1, 1, 4, 208, 121856, 772189440, 51989627289600, 36837279603595907072, 273129993621426778551615488, 21114078836429317912110529666154496, 16975032309392309949804839529585109326888960
Offset: 0
a(2) = 4;
* * *---* *---* *---*
| | | | | |
*---*---*---* *---*---*---* *---*---*---* *---* *---*
-
default(realprecision, 120);
{a(n) = round(prod(j=1, 2*n-1, prod(k=j+1, 2*n-1-j, 4-4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))))}
-
{a007341(n) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(n-1, 2, (4-x)/2))};
{a334088(n) = sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))};
{a(n) = if(n==0, 1, sqrtint(a007341(n)*a334088(n)/n))}
-
default(realprecision, 120);
{a(n) = if(n==0, 1, round(4^((n-1)^2)*prod(j=1, n-1, prod(k=j+1, n-1, 1-(cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))^2))))} \\ Seiichi Manyama, Jan 02 2021
-
# Using graphillion
from graphillion import GraphSet
def make_HMD(n):
s = 1
grids = []
for i in range(2 * n, 0, -2):
for j in range(i - 2):
a, b, c = s + j, s + j + 1, s + i + j
grids.extend([(a, b), (b, c)])
grids.append((s + i - 2, s + i - 1))
s += i
return grids
def A340176(n):
if n == 0: return 1
universe = make_HMD(n)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A340176(n) for n in range(7)])
A340352
Number of spanning trees of odd Aztec diamond OD_n.
Original entry on oeis.org
1, 192, 4542720, 12116689944576, 3544863978266468352000, 112387469554685044937510092800000, 383669915612621265759587438135691539652804608, 140496256399491641572818822014023027580848616806252629983232
Offset: 1
-
default(realprecision, 120);
{a(n) = round(4^(2*(n-1)*n)*prod(j=1, n-1, prod(k=1, n-1, 1-(sin(j*Pi/(2*n))*sin(k*Pi/(2*n)))^2)))}
Showing 1-7 of 7 results.
Comments