cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007725 Number of spanning trees of Aztec diamonds of order n.

Original entry on oeis.org

1, 4, 768, 18170880, 48466759778304, 14179455913065873408000, 449549878218740179750040371200000, 1534679662450485063038349752542766158611218432, 561985025597966566291275288056092110323394467225010519932928
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^n * Product[Product[4 - 4*Cos[j*Pi/(2*n)]*Cos[k*Pi/(2*n)], {k, 1, n-1}], {j, 1, 2*n-1}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 05 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = if(n==0, 1, round(4^(2*(n-1)*n+1)*prod(j=1, n-1, prod(k=1, n-1, 1-(sin(j*Pi/(2*n))*sin(k*Pi/(2*n)))^2))))} \\ Seiichi Manyama, Jan 05 2021

Formula

a(n) ~ Gamma(1/4) * exp(8*G*n^2/Pi) / (Pi^(3/4) * sqrt(n) * 4^n), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 05 2021
a(n) = 4^(2*n-1) * Product_{1<=j,k<=n-1} (4 - 4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))*(4 + 4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n))); [Knuth Eq. (8) p. 3]. - Seiichi Manyama, Jan 05 2021

Extensions

More terms from Alois P. Heinz, Jan 20 2011
Offset changed (a(0)=1) by Seiichi Manyama, Jan 05 2021

A340176 Number of spanning trees in the halved Aztec diamond HMD_n.

Original entry on oeis.org

1, 1, 4, 208, 121856, 772189440, 51989627289600, 36837279603595907072, 273129993621426778551615488, 21114078836429317912110529666154496, 16975032309392309949804839529585109326888960
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

*---*
| |
*---* *---*---*---*
| | | | | |
*---* *---*---*---* *---*---*---*---*---*
HMD_1 HMD_2 HMD_3
-------------------------------------------------
*---*
| |
*---*---*---*
| | | |
*---*---*---*---*---*
| | | | | |
*---*---*---*---*---*---*---*
HMD_4

Examples

			a(2) = 4;
      *   *           *---*           *---*           *---*
      |   |               |           |               |   |
  *---*---*---*   *---*---*---*   *---*---*---*   *---*   *---*
		

Crossrefs

Cf. A007341, A007725, A007726, A334088, A334089, A340139, A340166, A340185 (halved Aztec diamond HOD_n).

Programs

  • PARI
    default(realprecision, 120);
    {a(n) = round(prod(j=1, 2*n-1, prod(k=j+1, 2*n-1-j, 4-4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))))}
    
  • PARI
    {a007341(n) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(n-1, 2, (4-x)/2))};
    {a334088(n) = sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))};
    {a(n) = if(n==0, 1, sqrtint(a007341(n)*a334088(n)/n))}
    
  • PARI
    default(realprecision, 120);
    {a(n) = if(n==0, 1, round(4^((n-1)^2)*prod(j=1, n-1, prod(k=j+1, n-1, 1-(cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))^2))))} \\ Seiichi Manyama, Jan 02 2021
    
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_HMD(n):
        s = 1
        grids = []
        for i in range(2 * n, 0, -2):
            for j in range(i - 2):
                a, b, c = s + j, s + j + 1, s + i + j
                grids.extend([(a, b), (b, c)])
            grids.append((s + i - 2, s + i - 1))
            s += i
        return grids
    def A340176(n):
        if n == 0: return 1
        universe = make_HMD(n)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A340176(n) for n in range(7)])

Formula

a(n) = Product_{1<=j
a(n) = 2^(n-1) * A007726(n) * A334089(n) = sqrt(A007341(n) * A334088(n) / n) for n > 0.
a(n) = 4^(n-1) * A340139(n) = 4^((n-1)^2) * Product_{1<=j 0. - Seiichi Manyama, Jan 02 2021
a(n) ~ sqrt(Gamma(1/4)) * exp(4*G*n^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n - 1/4) * (1 + sqrt(2))^n), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 05 2021

A340291 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - cos(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 15, 32625, 8238791743, 230629380093001665, 703130165949449759361247759, 231459008314298532714943209968328640625, 8186710889725936196671113787217620194601044287109375
Offset: 0

Author

Seiichi Manyama, Jan 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(4*n^2) * Product[Product[1 - Cos[j*Pi/(2*n+1)]^2 * Cos[k*Pi/(2*n+1)]^2, {j, 1, n}], {k, 1, n}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 03 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))}

Formula

a(n) = A093967(2*n+1) * A340185(n)^2.
a(n) ~ Gamma(1/4) * exp(2*G*(2*n+1)^2/Pi) / (Pi^(3/4) * sqrt(n) * 2^(2*n + 2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 03 2021

A340293 a(n) = 4^((n-1)*n) * Product_{1<=j

Original entry on oeis.org

1, 1, 11, 1247, 1455913, 17511093953, 2169916151129091, 2770393222231417622719, 36443188794328204864735075793, 4939371777650229260975457785579794433, 6897784079863728378183626237683602071537213179
Offset: 0

Author

Seiichi Manyama, Jan 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(2*n*(n-1)) * Product[Product[1 - Sin[j*Pi/(2*n + 1)]^2*Sin[k*Pi/(2*n + 1)]^2, {k, j+1, n}], {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^((n-1)*n)*prod(j=1, n, prod(k=j+1, n, 1-(sin(j*Pi/(2*n+1))*sin(k*Pi/(2*n+1)))^2)))}

Formula

a(n) ~ exp(G*(2*n+1)^2/Pi) / (2^(2*n - 1/8) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 04 2021

A340352 Number of spanning trees of odd Aztec diamond OD_n.

Original entry on oeis.org

1, 192, 4542720, 12116689944576, 3544863978266468352000, 112387469554685044937510092800000, 383669915612621265759587438135691539652804608, 140496256399491641572818822014023027580848616806252629983232
Offset: 1

Author

Seiichi Manyama, Jan 05 2021

Keywords

Comments

R. P. Stanley conjectured that the even Aztec diamond has exactly four times as many spanning trees as the odd Aztec diamond. This conjecture was first proved by D. E. Knuth.
*
|
* *---*---*
| | | |
* *---*---* *---*---*---*---*
| | | | | | | | |
*---*---* *---*---*---*---* *---*---*---*---*---*---*
| | | | | | | | |
* *---*---* *---*---*---*---*
| | | |
* *---*---*
|
*
OD_1 OD_2 OD_3

Crossrefs

Cf. A007725 (even Aztec diamond), A340166, A340185 (halved Aztec diamond HOD_n).

Programs

  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*(n-1)*n)*prod(j=1, n-1, prod(k=1, n-1, 1-(sin(j*Pi/(2*n))*sin(k*Pi/(2*n)))^2)))}

Formula

a(n) = 4^(2*(n-1)) * A340166(n) = 4^(2*(n-1)*n) * Product_{1<=j,k<=n-1} (1 - sin(j*Pi/(2*n))^2 * sin(k*Pi/(2*n))^2).
a(n) ~ Gamma(1/4) * exp(8*G*n^2/Pi) / (Pi^(3/4) * sqrt(n) * 2^(2*n + 2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 06 2021
Showing 1-5 of 5 results.