cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340166 a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - sin(i*Pi/(2*n))^2 * sin(j*Pi/(2*n))^2).

Original entry on oeis.org

1, 12, 17745, 2958176256, 54090331699622625, 107181043200192494332800000, 22868509031094388112997259982567521313, 523389340935243821042846225254323436248483571433472
Offset: 1

Views

Author

Seiichi Manyama, Dec 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^(2*(n-1)^2) * Product[Product[1 - Sin[i*Pi/(2*n)]^2 * Sin[j*Pi/(2*n)]^2, {i, 1, n-1}], {j, 1, n-1}], {n, 1, 10}] // Round (* Vaclav Kotesovec, Dec 31 2020 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*(n-1)^2)*prod(i=1, n-1, prod(j=1, n-1, 1-(sin(i*Pi/(2*n))*sin(j*Pi/(2*n)))^2)))}

Formula

a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - cos(i*Pi/(2*n))^2 * cos(j*Pi/(2*n))^2).
a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - sin(i*Pi/(2*n))^2 * cos(j*Pi/(2*n))^2).
a(n) ~ Gamma(1/4) * exp(8*G*n^2/Pi) / (Pi^(3/4) * sqrt(n) * 2^(6*n - 2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 05 2021

A229728 Decimal expansion of the square of the constant A130834.

Original entry on oeis.org

3, 2, 0, 9, 9, 1, 2, 3, 0, 0, 7, 2, 8, 1, 5, 7, 6, 7, 8, 6, 2, 9, 7, 4, 9, 4, 8, 1, 7, 7, 9, 9, 0, 5, 1, 5, 8, 7, 4, 8, 5, 9, 2, 1, 2, 4, 2, 5, 1, 8, 3, 4, 4, 9, 4, 8, 7, 4, 5, 8, 6, 0, 0, 5, 8, 4, 6, 1, 0, 2, 4, 6, 4, 1, 6, 2, 4, 2, 4, 0, 2, 0, 4, 0, 6, 6, 7, 6, 7, 1, 2, 1, 5, 1, 4, 1, 0, 8, 8, 7, 0, 9, 4, 2, 8, 4, 6, 6, 9, 1, 5, 8, 3, 8, 7, 5, 2, 2, 6, 9
Offset: 1

Views

Author

N. J. A. Sloane, Oct 01 2013

Keywords

Examples

			3.209912300728157678629749481779905158748592124251834494874586...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 232.

Crossrefs

Programs

Formula

From Amiram Eldar, Jun 12 2023: (Start)
Equals exp(4*G/Pi) = exp(4*A006752/A000796).
Equals A097469^4. (End)

A340176 Number of spanning trees in the halved Aztec diamond HMD_n.

Original entry on oeis.org

1, 1, 4, 208, 121856, 772189440, 51989627289600, 36837279603595907072, 273129993621426778551615488, 21114078836429317912110529666154496, 16975032309392309949804839529585109326888960
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

*---*
| |
*---* *---*---*---*
| | | | | |
*---* *---*---*---* *---*---*---*---*---*
HMD_1 HMD_2 HMD_3
-------------------------------------------------
*---*
| |
*---*---*---*
| | | |
*---*---*---*---*---*
| | | | | |
*---*---*---*---*---*---*---*
HMD_4

Examples

			a(2) = 4;
      *   *           *---*           *---*           *---*
      |   |               |           |               |   |
  *---*---*---*   *---*---*---*   *---*---*---*   *---*   *---*
		

Crossrefs

Cf. A007341, A007725, A007726, A334088, A334089, A340139, A340166, A340185 (halved Aztec diamond HOD_n).

Programs

  • PARI
    default(realprecision, 120);
    {a(n) = round(prod(j=1, 2*n-1, prod(k=j+1, 2*n-1-j, 4-4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))))}
    
  • PARI
    {a007341(n) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(n-1, 2, (4-x)/2))};
    {a334088(n) = sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))};
    {a(n) = if(n==0, 1, sqrtint(a007341(n)*a334088(n)/n))}
    
  • PARI
    default(realprecision, 120);
    {a(n) = if(n==0, 1, round(4^((n-1)^2)*prod(j=1, n-1, prod(k=j+1, n-1, 1-(cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))^2))))} \\ Seiichi Manyama, Jan 02 2021
    
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_HMD(n):
        s = 1
        grids = []
        for i in range(2 * n, 0, -2):
            for j in range(i - 2):
                a, b, c = s + j, s + j + 1, s + i + j
                grids.extend([(a, b), (b, c)])
            grids.append((s + i - 2, s + i - 1))
            s += i
        return grids
    def A340176(n):
        if n == 0: return 1
        universe = make_HMD(n)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A340176(n) for n in range(7)])

Formula

a(n) = Product_{1<=j
a(n) = 2^(n-1) * A007726(n) * A334089(n) = sqrt(A007341(n) * A334088(n) / n) for n > 0.
a(n) = 4^(n-1) * A340139(n) = 4^((n-1)^2) * Product_{1<=j 0. - Seiichi Manyama, Jan 02 2021
a(n) ~ sqrt(Gamma(1/4)) * exp(4*G*n^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n - 1/4) * (1 + sqrt(2))^n), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 05 2021

A340165 a(n) = 4^((n-2)*(n-1)) * Product_{1<=i

Original entry on oeis.org

1, 1, 19, 7056, 51251277, 7280323311888, 20225477546584790663, 1098876823994281426921193472, 1167619533875635661974056722756222809, 24263631353490502503207804571072304043237024000
Offset: 1

Author

Seiichi Manyama, Dec 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^((n-2)*(n-1)) * Product[Product[1 + Sin[i*Pi/(2*n)]^2 * Sin[j*Pi/(2*n)]^2, {i, 1, j-1}], {j, 2, n-1}], {n, 1, 12}] // Round (* Vaclav Kotesovec, Dec 31 2020 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^((n-2)*(n-1))*prod(j=2, n-1, prod(i=1, j-1, 1+(sin(i*Pi/(2*n))*sin(j*Pi/(2*n)))^2)))}

Formula

a(n) = 4^((n-2)*(n-1)) * Product_{1<=i
a(n) ~ 2^(2*n^2 - 3*n + 35/8) * (1 - sqrt(2*sqrt(2)-2))^n * exp(2*A340350*n^2/Pi^2). - Vaclav Kotesovec, Jan 05 2021
Showing 1-4 of 4 results.