A340185 Number of spanning trees in the halved Aztec diamond HOD_n.
1, 1, 15, 2639, 5100561, 105518291153, 23067254643457375, 52901008815129395889375, 1266973371422697144030728637409, 315937379766837559600972497421046382689, 818563964325891485548944567913851815851212484079
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..40
- Mihai Ciucu, Symmetry classes of spanning trees of Aztec diamonds and perfect matchings of odd squares with a unit hole, arXiv:0710.4500 [math.CO], 2007. See Corollary 3.7.
Crossrefs
Programs
-
Mathematica
Table[4^((n-1)*n) * Product[Product[(1 - Cos[j*Pi/(2*n + 1)]^2*Cos[k*Pi/(2*n + 1)]^2), {k, j+1, n}], {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Jan 03 2021 *)
-
PARI
default(realprecision, 120); {a(n) = round(prod(j=1, 2*n, prod(k=j+1, 2*n-j, 4-4*cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))))}
-
PARI
default(realprecision, 120); {a(n) = round(4^((n-1)*n)*prod(j=1, n, prod(k=j+1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))} \\ Seiichi Manyama, Jan 02 2021
-
Python
# Using graphillion from graphillion import GraphSet def make_HOD(n): s = 1 grids = [] for i in range(2 * n + 1, 1, -2): for j in range(i - 2): a, b, c = s + j, s + j + 1, s + i + j grids.extend([(a, b), (b, c)]) grids.append((s + i - 2, s + i - 1)) s += i return grids def A340185(n): if n == 0: return 1 universe = make_HOD(n) GraphSet.set_universe(universe) spanning_trees = GraphSet.trees(is_spanning=True) return spanning_trees.len() print([A340185(n) for n in range(7)])
Formula
a(n) = Product_{1<=j
From Seiichi Manyama, Jan 02 2021: (Start)
a(n) = 4^((n-1)*n) * Product_{1<=j
a(n) ~ sqrt(Gamma(1/4)) * exp(G*(2*n+1)^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n + 3/4) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 03 2021
Comments