cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340445 Number of partitions of n into 3 parts that are not all the same.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 26, 30, 33, 36, 40, 44, 47, 52, 56, 60, 65, 70, 74, 80, 85, 90, 96, 102, 107, 114, 120, 126, 133, 140, 146, 154, 161, 168, 176, 184, 191, 200, 208, 216, 225, 234, 242, 252, 261, 270, 280, 290, 299, 310, 320, 330
Offset: 0

Views

Author

Wesley Ivan Hurt, Jan 07 2021

Keywords

Comments

Conjecturally the same as A230059 (apart from the offset). - R. J. Mathar, Jan 14 2021

Examples

			a(6) = 2; [4,1,1], [3,2,1] ( [2,2,2] not counted ),
a(7) = 4; [5,1,1], [4,2,1], [3,3,1], [3,2,2],
a(8) = 5; [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2],
a(9) = 6; [7,1,1], [6,2,1], [5,3,1], [4,4,1], [5,2,2], [4,3,2] ( [3,3,3] not counted ).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[i, k, n - i - k]), {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 0, 80}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - [k = i = n-i-k]), where [ ] is the (generalized) Iverson bracket.
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - [k = i] * [2*i = n-k] * [2*k = n-i]), where [ ] is the Iverson bracket.
From Alois P. Heinz, Jan 07 2021: (Start)
G.f.: x^4*(x^2-x-1)/((x+1)*(x^2+x+1)*(x-1)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6), n>6. (End)
a(n) = A036410(n-1)-1. - Hugo Pfoertner, Jan 09 2021
a(n) + A079978(n) = A069905(n), n>0. - R. J. Mathar, Jan 18 2021
72*a(n) = -16*A099837(n+3) -9*(-1)^n +6*n^2 -31. - R. J. Mathar, Jun 09 2022