cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340472 Numerators of an approximation to zeta(n)/Pi^n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 61, 1, 277, 1, 50521, 691, 540553, 2, 199360981, 3617, 3878302429, 43867, 2404879675441, 174611, 14814847529501, 155366, 69348874393137901, 236364091, 238685140977801337, 1315862, 4087072509293123892361, 6785560294, 13181680435827682794403, 6892673020804
Offset: 1

Views

Author

Melchor Viso Martinez, Jan 08 2021

Keywords

Examples

			1/2, 1/6, 1/28, 1/90, 5/1488, 1/945, 61/182880, 1/9450, 277/8241408, 1/93555, 50521/14856307200, 691/638512875, ...
Values are approximate for odd indices, exact for even indices:
  zeta(1) ~       1/2             zeta(2) = Pi^2/6
  zeta(3) ~    Pi^3/28            zeta(4) = Pi^4/90
  zeta(5) ~  5*Pi^5/1488          zeta(6) = Pi^6/945
  zeta(7) ~ 61*Pi^7/182880,       zeta(8) = Pi^8/9450
  ...
		

Crossrefs

Cf. A046988, A340471 (denominators).

Programs

  • Mathematica
    a[k_] := Numerator[(1/(4 (1 - 2^-k) k!)
          D[\[Lambda] Tan[(\[Pi] + \[Lambda])/4], {\[Lambda],
           k}]) /. {\[Lambda] -> 0}]
  • PARI
    a(n) = {my(t=tan(x/4 + O(x*x^n))); numerator(polcoef(x*(1 + t)/(1 - t), n)/((4-2^(2-n))))} \\ Andrew Howroyd, Jan 10 2021

Formula

a(n) = numerator of lim_{x->0} of the n-th derivative of x*tan((Pi+x)/4)/((4-2^(2-n))*n!) with respect to x.
a(2*n) = A046988(n).