cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Melchor Viso Martinez

Melchor Viso Martinez's wiki page.

Melchor Viso Martinez has authored 2 sequences.

A340471 Denominators of an approximation to zeta(n)/Pi^n.

Original entry on oeis.org

2, 6, 28, 90, 1488, 945, 182880, 9450, 8241408, 93555, 14856307200, 638512875, 1569400842240, 18243225, 5713142135500800, 325641566250, 1096948397364019200, 38979295480125, 6713362606110031872000, 1531329465290625, 408173030347971900211200, 13447856940643125
Offset: 1

Author

Melchor Viso Martinez, Jan 08 2021

Keywords

Examples

			1/2, 1/6, 1/28, 1/90, 5/1488, 1/945, 61/182880, 1/9450, 277/8241408, 1/93555, 50521/14856307200, 691/638512875, ...
Values are approximate for odd indices, exact for even indices:
  zeta(1) ~       1/2             zeta(2) = Pi^2/6
  zeta(3) ~    Pi^3/28            zeta(4) = Pi^4/90
  zeta(5) ~  5*Pi^5/1488          zeta(6) = Pi^6/945
  zeta(7) ~ 61*Pi^7/182880,       zeta(8) = Pi^8/9450
  ...
		

Crossrefs

Cf. A000831, A002432, A331839, A340472 (numerators).

Programs

  • Mathematica
    a[k_] := Denominator[(1/(4 (1 - 2^-k) k!)
          D[\[Lambda] Tan[(\[Pi] + \[Lambda])/4], {\[Lambda],
           k}]) /. {\[Lambda] -> 0}]
  • PARI
    a(n) = {my(t=tan(x/4 + O(x*x^n))); denominator(polcoef(x*(1 + t)/(1 - t), n)/((4-2^(2-n))))} \\ Andrew Howroyd, Jan 10 2021

Formula

a(n) = denominator of lim_{x->0} of the n-th derivative of x*tan((Pi+x)/4)/((4-2^(2-n))*n!) with respect to x.
a(2*n) = A002432(n).
From Andrew Howroyd, Jan 10 2021: (Start)
a(n) = denominator of (1/(4-2^(2-n)))*[x^n] x*(1 + tan(x/4))/(1 - tan(x/4)).
a(n) = denominator( A000831(n-1)/((n-1)!*2^n*(2^n-1)) ). (End)

A340472 Numerators of an approximation to zeta(n)/Pi^n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 61, 1, 277, 1, 50521, 691, 540553, 2, 199360981, 3617, 3878302429, 43867, 2404879675441, 174611, 14814847529501, 155366, 69348874393137901, 236364091, 238685140977801337, 1315862, 4087072509293123892361, 6785560294, 13181680435827682794403, 6892673020804
Offset: 1

Author

Melchor Viso Martinez, Jan 08 2021

Keywords

Examples

			1/2, 1/6, 1/28, 1/90, 5/1488, 1/945, 61/182880, 1/9450, 277/8241408, 1/93555, 50521/14856307200, 691/638512875, ...
Values are approximate for odd indices, exact for even indices:
  zeta(1) ~       1/2             zeta(2) = Pi^2/6
  zeta(3) ~    Pi^3/28            zeta(4) = Pi^4/90
  zeta(5) ~  5*Pi^5/1488          zeta(6) = Pi^6/945
  zeta(7) ~ 61*Pi^7/182880,       zeta(8) = Pi^8/9450
  ...
		

Crossrefs

Cf. A046988, A340471 (denominators).

Programs

  • Mathematica
    a[k_] := Numerator[(1/(4 (1 - 2^-k) k!)
          D[\[Lambda] Tan[(\[Pi] + \[Lambda])/4], {\[Lambda],
           k}]) /. {\[Lambda] -> 0}]
  • PARI
    a(n) = {my(t=tan(x/4 + O(x*x^n))); numerator(polcoef(x*(1 + t)/(1 - t), n)/((4-2^(2-n))))} \\ Andrew Howroyd, Jan 10 2021

Formula

a(n) = numerator of lim_{x->0} of the n-th derivative of x*tan((Pi+x)/4)/((4-2^(2-n))*n!) with respect to x.
a(2*n) = A046988(n).