A340588 Squares of perfect powers.
1, 16, 64, 81, 256, 625, 729, 1024, 1296, 2401, 4096, 6561, 10000, 14641, 15625, 16384, 20736, 28561, 38416, 46656, 50625, 59049, 65536, 83521, 104976, 117649, 130321, 160000, 194481, 234256, 262144, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1000000
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= n-> is(igcd(seq(i[2], i=ifactors(n)[2]))<>2): select(q, [i^2$i=1..1000])[]; # Alois P. Heinz, Nov 26 2024
-
Mathematica
Join[{1}, (Select[Range[2000], GCD @@ FactorInteger[#][[All, 2]] > 1 &])^2]
-
Python
from sympy import mobius, integer_nthroot def A340588(n): def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax**2 # Chai Wah Wu, Aug 14 2024
Formula
a(n) = A001597(n)^2.
a(n+1) = A062965(n) + 1. - Hugo Pfoertner, Sep 29 2020
Sum_{k>1} 1/(a(k) - 1) = 7/4 - Pi^2/6 = 7/4 - zeta(2).
Sum_{k>1} 1/a(k) = Sum_{k>=2} mu(k)*(1-zeta(2*k)).