cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340588 Squares of perfect powers.

Original entry on oeis.org

1, 16, 64, 81, 256, 625, 729, 1024, 1296, 2401, 4096, 6561, 10000, 14641, 15625, 16384, 20736, 28561, 38416, 46656, 50625, 59049, 65536, 83521, 104976, 117649, 130321, 160000, 194481, 234256, 262144, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1000000
Offset: 1

Views

Author

Terry D. Grant, Sep 21 2020

Keywords

Crossrefs

Cf. A153158 (complement within positive squares).

Programs

  • Maple
    q:= n-> is(igcd(seq(i[2], i=ifactors(n)[2]))<>2):
    select(q, [i^2$i=1..1000])[];  # Alois P. Heinz, Nov 26 2024
  • Mathematica
    Join[{1}, (Select[Range[2000], GCD @@ FactorInteger[#][[All, 2]] > 1 &])^2]
  • Python
    from sympy import mobius, integer_nthroot
    def A340588(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**2 # Chai Wah Wu, Aug 14 2024

Formula

a(n) = A001597(n)^2.
a(n+1) = A062965(n) + 1. - Hugo Pfoertner, Sep 29 2020
Sum_{k>1} 1/(a(k) - 1) = 7/4 - Pi^2/6 = 7/4 - zeta(2).
Sum_{k>1} 1/a(k) = Sum_{k>=2} mu(k)*(1-zeta(2*k)).