cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340589 Number of partitions of n into 4 parts with at least one odd part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 8, 11, 13, 18, 20, 27, 29, 39, 41, 54, 55, 72, 73, 94, 93, 120, 118, 150, 146, 185, 179, 225, 215, 270, 258, 321, 304, 378, 357, 441, 414, 511, 479, 588, 548, 672, 626, 764, 708, 864, 800, 972, 897, 1089, 1004, 1215, 1116, 1350, 1240, 1495
Offset: 0

Views

Author

Wesley Ivan Hurt, Jan 12 2021

Keywords

Examples

			a(7) = 3; [4,1,1,1], [3,2,1,1], [2,2,2,1].
a(8) = 4; [5,1,1,1], [4,2,1,1], [3,3,1,1], [3,2,2,1], (not [2,2,2,2]).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sign[Mod[k, 2] + Mod[j, 2] + Mod[i, 2] + Mod[n - i - j - k, 2]], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign((k mod 2) + (j mod 2) + (i mod 2) + ((n-i-j-k) mod 2)).