A340601 Number of integer partitions of n of even rank.
1, 1, 0, 3, 1, 5, 3, 11, 8, 18, 16, 34, 33, 57, 59, 98, 105, 159, 179, 262, 297, 414, 478, 653, 761, 1008, 1184, 1544, 1818, 2327, 2750, 3480, 4113, 5137, 6078, 7527, 8899, 10917, 12897, 15715, 18538, 22431, 26430, 31805, 37403, 44766, 52556, 62620, 73379
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 18 partitions (empty column indicated by dot): (1) . (3) (22) (5) (42) (7) (44) (9) (21) (41) (321) (43) (62) (63) (111) (311) (2211) (61) (332) (81) (2111) (322) (521) (333) (11111) (331) (2222) (522) (511) (4211) (531) (2221) (32111) (711) (4111) (221111) (4221) (31111) (4311) (211111) (6111) (1111111) (32211) (33111) (51111) (222111) (411111) (3111111) (21111111) (111111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Freeman J. Dyson, A new symmetry of partitions, Journal of Combinatorial Theory 7.1 (1969): 56-61.
- FindStat, St000145: The Dyson rank of a partition
Crossrefs
Note: Heinz numbers are given in parentheses below.
The Heinz numbers of these partitions are A340602.
- Rank -
A072233 counts partitions by sum and length.
A257541 gives the rank of the partition with Heinz number n.
A340653 counts factorizations of rank 0.
- Even -
A024430 counts set partitions of even length.
A034008 counts compositions of even length.
A052841 counts ordered set partitions of even length.
A339846 counts factorizations of even length.
Programs
-
Maple
b:= proc(n, i, r) option remember; `if`(n=0, 1-max(0, r), `if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1- `if`(r<0, irem(i, 2), r)))) end: a:= n-> b(n$2, -1): seq(a(n), n=0..55); # Alois P. Heinz, Jan 22 2021
-
Mathematica
Table[If[n==0,1,Length[Select[IntegerPartitions[n],EvenQ[Max[#]-Length[#]]&]]],{n,0,30}] (* Second program: *) b[n_, i_, r_] := b[n, i, r] = If[n == 0, 1 - Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]]; a[n_] := b[n, n, -1]; a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
-
PARI
p_q(k) = {prod(j=1, k, 1-q^j); } GB_q(N, M)= {if(N>=0 && M>=0, p_q(N+M)/(p_q(M)*p_q(N)), 0 ); } A_q(N) = {my(q='q+O('q^N), g=1+sum(i=1,N, sum(j=1,N/i, q^(i*j) * ( ((1/2)*(1+(-1)^(i+j))) + sum(k=1,N-(i*j), ((q^k)*GB_q(k,i-2)) * ((1/2)*(1+(-1)^(i+j+k)))))))); Vec(g)} A_q(50) \\ John Tyler Rascoe, Apr 15 2024
Formula
G.f.: 1 + Sum_{i, j>0} q^(i*j) * ( (1+(-1)^(i+j))/2 + Sum_{k>0} q^k * q_binomial(k,i-2) * (1+(-1)^(i+j+k))/2 ). - John Tyler Rascoe, Apr 15 2024
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Apr 17 2024
Comments