A340621 The number of partitions of n without repeated odd parts having more odd parts than even parts.
0, 1, 0, 1, 1, 1, 2, 1, 4, 2, 6, 3, 9, 6, 12, 10, 17, 17, 22, 26, 30, 40, 40, 57, 55, 82, 74, 112, 103, 153, 140, 203, 193, 270, 262, 351, 357, 458, 478, 589, 641, 760, 846, 971, 1114, 1244, 1450, 1582, 1880, 2018, 2412, 2558, 3086, 3247, 3914, 4102, 4949
Offset: 0
Keywords
Examples
a(8) = 4 counts the partitions [7,1], [5,3], [5,2,1], and [4,3,1].
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(n=0, `if`(c>0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j* `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Jan 13 2021
-
Mathematica
b[n_, i_, c_] := b[n, i, c] = If[n == 0, If[c > 0, 1, 0], If[i < 1, 0, Function[t, Sum[b[n - i*j, i - 1, c + j* If[t, 1, -1]], {j, 0, Min[n/i, If[t, 1, n]]}]][OddQ[i]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)
-
PARI
my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=1, sqrt(N), x^(k^2)*(1-x^(2*k))/prod(j=1, k, (1-x^(2*j))^2)))) \\ Seiichi Manyama, Jan 14 2021
Formula
G.f.: Sum_{n>=1} q^(n^2)*(1-q^(2*n))/Product_{k=1..n} (1-q^(2*k))^2.
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2^(3/2) * 5^(3/4) * n). - Vaclav Kotesovec, Jan 14 2021