A340622 The number of partitions of n without repeated odd parts having an equal number of odd parts and even parts.
1, 0, 0, 1, 0, 2, 0, 3, 1, 4, 2, 5, 5, 6, 8, 8, 14, 10, 20, 14, 30, 20, 40, 29, 56, 42, 72, 62, 96, 88, 122, 125, 160, 174, 202, 239, 263, 322, 334, 431, 434, 566, 554, 739, 719, 954, 920, 1222, 1192, 1552, 1524, 1964, 1962, 2466, 2500, 3088, 3196, 3848, 4046
Offset: 0
Keywords
Examples
a(9) = 4 counts the partitions [8,1], [7,2], [6,3], and [5,4].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..6000
- B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(n=0, `if`(c=0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j* `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Jan 13 2021
-
Mathematica
b[n_, i_, c_] := b[n, i, c] = If[n == 0, If[c == 0, 1, 0], If[i < 1, 0, Function[t, Sum[b[n-i*j, i-1, c + j* If[t, 1, -1]], {j, 0, Min[n/i, If[t, 1, n]]}]][OddQ[i]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)
Formula
G.f.: Sum_{n>=1} q^(n^2+2*n)/Product_{k=1..n} (1-q^(2*k))^2.
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2^(1/2) * 5^(3/4) * (1 + sqrt(5)) * n). - Vaclav Kotesovec, Jan 14 2021