cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340622 The number of partitions of n without repeated odd parts having an equal number of odd parts and even parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 3, 1, 4, 2, 5, 5, 6, 8, 8, 14, 10, 20, 14, 30, 20, 40, 29, 56, 42, 72, 62, 96, 88, 122, 125, 160, 174, 202, 239, 263, 322, 334, 431, 434, 566, 554, 739, 719, 954, 920, 1222, 1192, 1552, 1524, 1964, 1962, 2466, 2500, 3088, 3196, 3848, 4046
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 13 2021

Keywords

Examples

			a(9) = 4 counts the partitions [8,1], [7,2], [6,3], and [5,4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c=0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j*
          `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 13 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n == 0,
         If[c == 0, 1, 0], If[i < 1, 0, Function[t, Sum[b[n-i*j, i-1, c + j*
         If[t, 1, -1]], {j, 0, Min[n/i, If[t, 1, n]]}]][OddQ[i]]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)

Formula

G.f.: Sum_{n>=1} q^(n^2+2*n)/Product_{k=1..n} (1-q^(2*k))^2.
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2^(1/2) * 5^(3/4) * (1 + sqrt(5)) * n). - Vaclav Kotesovec, Jan 14 2021