A340623 The number of partitions of n without repeated odd parts having more even parts than odd parts.
0, 0, 1, 0, 2, 1, 3, 3, 5, 7, 8, 13, 14, 23, 23, 37, 39, 59, 63, 90, 101, 136, 156, 201, 239, 296, 355, 428, 523, 617, 754, 878, 1078, 1243, 1517, 1741, 2121, 2426, 2928, 3348, 4021, 4596, 5468, 6257, 7400, 8472, 9936, 11389, 13285, 15233, 17645, 20244, 23346
Offset: 0
Keywords
Examples
a(7) = 3 counts the partitions [4,2,1], [3,2,2], and [2,2,2,1].
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(n=0, `if`(c<0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j* `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Jan 13 2021
-
Mathematica
nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k - 1))/(1 - x^(2*k)), {k, 1, nmax/2}] - Sum[x^(k^2)/Product[(1 - x^(2*j))^2, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)
-
PARI
my(N=66, x='x+O('x^N)); concat([0, 0], Vec(prod(k=1, N, (1+x^(2*k-1))/(1-x^(2*k)))-sum(k=0, sqrt(N), x^(k^2)/prod(j=1, k, (1-x^(2*j))^2)))) \\ Seiichi Manyama, Jan 14 2021
Formula
G.f.: (Product_{k>=1} (1+q^(2*k-1))/(1-q^(2*k))) - Sum_{n>=0} q^(n^2)/Product_{k=1..n} (1-q^(2*k))^2.