cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340649 a(n) = (n*prime(n+1)) mod prime(n).

Original entry on oeis.org

1, 1, 1, 2, 10, 11, 14, 13, 8, 20, 4, 11, 26, 13, 43, 43, 34, 47, 9, 40, 53, 9, 55, 14, 3, 52, 5, 56, 7, 81, 124, 61, 66, 62, 70, 65, 65, 152, 67, 67, 82, 58, 86, 176, 90, 154, 142, 192, 98, 200, 73, 104, 48, 73, 73, 73, 114, 77, 236, 120, 44, 282, 252, 128
Offset: 1

Views

Author

Simon Strandgaard, Jan 14 2021

Keywords

Examples

			a(1) = (prime(1+1) * 1) mod prime(1) =  3 * 1 mod  2 = 1,
a(2) = (prime(2+1) * 2) mod prime(2) =  5 * 2 mod  3 = 1,
a(3) = (prime(3+1) * 3) mod prime(3) =  7 * 3 mod  5 = 1,
a(4) = (prime(4+1) * 4) mod prime(4) = 11 * 4 mod  7 = 2,
a(5) = (prime(5+1) * 5) mod prime(5) = 13 * 5 mod 11 = 10.
		

Crossrefs

Programs

  • Magma
    [ (n*NthPrime(n+1)) mod NthPrime(n) : n in [1..60]]; // Wesley Ivan Hurt, Apr 23 2021
  • Mathematica
    Table[Mod[Prime[n + 1]*n, Prime[n]],{n, 1, 64}] (* Robert P. P. McKone, Jan 15 2021 *)
  • PARI
    a(n) = prime(n+1)*n % prime(n); \\ Michel Marcus, Jan 15 2021
    
  • Ruby
    require 'prime'
    values = []
    primes = Prime.first(20)
    primes.each_index do |n|
        next if n < 1
        values << (primes[n] * n) % primes[n-1]
    end
    p values
    

Formula

a(n) = A117495(n+1) mod prime(n). - Michel Marcus, Jan 15 2021