A340658 The number of overpartitions of n having more non-overlined parts than overlined parts.
0, 1, 2, 4, 8, 14, 25, 41, 67, 105, 163, 246, 368, 540, 784, 1124, 1596, 2242, 3124, 4316, 5918, 8058, 10899, 14651, 19581, 26028, 34417, 45293, 59327, 77372, 100483, 129984, 167502, 215077, 275199, 350966, 446162, 565451, 714515, 900334, 1131370, 1417963
Offset: 0
Keywords
Examples
a(3) = 4 counts the overpartitions [3], [2,1], [1,1,1], and [1',1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(n=0, `if`(c>0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add( add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2021
-
Mathematica
b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c>0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]]; a[n_] := b[n, n, 0]; a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
Formula
G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) - Sum_{n>=0} q^(n*(n+1)/2)/Product_{k=1..n} (1-q^k)^2.