cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340660 A000079 is the first row. For the second row, subtract A001045. For the third row, subtract A001045 from the second one, etc. The resulting array is read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 0, 3, 8, 1, -1, 2, 5, 16, 1, -2, 1, 2, 11, 32, 1, -3, 0, -1, 6, 21, 64, 1, -4, -1, -4, 1, 10, 43, 128, 1, -5, -2, -7, -4, -1, 22, 85, 256, 1, -6, -3, -10, -9, -12, 1, 42, 171, 512, 1, -7, -4, -13, -14, -23, -20, -1, 86, 341, 1024
Offset: 0

Views

Author

Paul Curtz, Jan 15 2021

Keywords

Comments

Every row has the signature (1,2).
(Among consequences: a(n) read by antidiagonals is
1,
1, 2,
1, 1, 4,
1, 0, 3, 8,
1, -1, 2, 5, 16
1, -2, 1, 2, 11, 32,
1, -3, 0, -1, 6, 21, 64,
... .
The row sums and their first two difference table terms are
1, 3, 6, 12, 23, 45, 88, ... = A086445(n+1) - 1
2, 3, 6, 11, 22, 43, 86, ... = A005578(n+2)
1, 3, 5, 11, 21, 43, 85, ... = A001045(n+2).
The antidiagonal sums are
b(n) = 1, 1, 3, 2, 5, 3, 9, 4, 15, 5, 27, 6, 49, 7, ... .)

Examples

			Square array:
1,  2,  4,   8,  16,  32,  64,  128, ... = A000079(n)
1,  1,  3,   5,  11,  21,  43,   85, ... = A001045(n+1)
1,  0,  2,   2,   6,  10,  22,   42, ... = A078008(n)
1, -1,  1,  -1,   1,  -1,   1,   -1, ... = A033999(n)
1, -2,  0,  -4,  -4, -12, -20,  -44, ... = -A084247(n)
1, -3, -1,  -7,  -9, -23, -41,  -87, ... = (-1)^n*A140966(n+1)
1, -4, -2, -10, -14, -34, -62, -130, ... = -A135440(n)
1, -5, -3, -13, -19, -45, -83, -173, ... = -A155980(n+3) or -A171382(n+1)
...
		

Crossrefs

Programs

  • Maple
    A:= (n, k)-> (<<0|1>, <2|1>>^k. <<1, 2-n>>)[1$2]:
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    A340660[m_, n_] := LinearRecurrence[{1, 2}, {1, m}, {n}]; Table[Reverse[Table[A340660[m, n + m - 2] // First, {m, 2, -n + 3, -1}]], {n, 1, 11}] // Flatten (* Robert P. P. McKone, Jan 28 2021 *)
  • PARI
    T(n, k) = 2^k - n*(2^k - (-1)^k)/3;
    matrix(10,10,n,k,T(n-1,k-1)) \\ Michel Marcus, Jan 19 2021

Formula

A(n,k) = 2^k - n*round(2^k/3).