cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340786 Number of factorizations of 4n into an even number of even factors > 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 6, 1, 3, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 4, 1, 7, 2, 2, 2, 7, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 10, 2, 3, 2, 4, 1, 4, 2, 6, 2, 2, 1, 8, 1, 2, 3, 12, 2, 4, 1, 4, 2, 4, 1, 10, 1, 2, 3, 4, 2, 4, 1, 10, 3, 2, 1, 8, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2021

Keywords

Examples

			The a(n) factorizations for n = 6, 12, 24, 36, 60, 80, 500:
  4*6   6*8      2*48      2*72      4*60      4*80          40*50
  2*12  2*24     4*24      4*36      6*40      8*40          4*500
        4*12     6*16      6*24      8*30      10*32         8*250
        2*2*2*6  8*12      8*18      10*24     16*20         10*200
                 2*2*4*6   12*12     12*20     2*160         20*100
                 2*2*2*12  2*2*6*6   2*120     2*2*2*40      2*1000
                           2*2*2*18  2*2*2*30  2*2*4*20      2*2*10*50
                                     2*2*6*10  2*2*8*10      2*2*2*250
                                               2*4*4*10      2*10*10*10
                                               2*2*2*2*2*10
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
Positions of ones are 1 and A000040, or A008578.
A version for partitions is A027187 (A028260).
Allowing odd length gives A108501 (bisection of A340785).
Allowing odd factors gives A339846.
An odd version is A340102.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A340101 counts factorizations into odd factors.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
- Even -
A027187 counts partitions of even maximum (A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).

Programs

  • Maple
    g:= proc(n, m, p)
     option remember;
     local F,r,x,i;
     # number of factorizations of n into even factors > m with number of factors == p (mod 2)
     if n = 1 then if p = 0 then return 1 else return 0 fi fi;
     if m > n  or n::odd then return 0 fi;
     F:= sort(convert(select(t -> t > m and t::even, numtheory:-divisors(n)),list));
     r:= 0;
     for x in F do
       for i from 1 while n mod x^i = 0 do
         r:= r + procname(n/x^i, x, (p+i) mod 2)
     od od;
     r
    end proc:
    f:= n -> g(4*n, 1, 0):
    map(f, [$1..100]); # Robert Israel, Mar 16 2023
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[4n],EvenQ[Length[#]]&&Select[#,OddQ]=={}&]],{n,100}]
  • PARI
    A340786aux(n, m=n, p=0) = if(1==n, (0==p), my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A340786aux(n/d, d, 1-p))); (s));
    A340786(n) = A340786aux(4*n); \\ Antti Karttunen, Apr 14 2022