A340786 Number of factorizations of 4n into an even number of even factors > 1.
1, 1, 1, 3, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 6, 1, 3, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 4, 1, 7, 2, 2, 2, 7, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 10, 2, 3, 2, 4, 1, 4, 2, 6, 2, 2, 1, 8, 1, 2, 3, 12, 2, 4, 1, 4, 2, 4, 1, 10, 1, 2, 3, 4, 2, 4, 1, 10, 3, 2, 1, 8, 2, 2
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 6, 12, 24, 36, 60, 80, 500: 4*6 6*8 2*48 2*72 4*60 4*80 40*50 2*12 2*24 4*24 4*36 6*40 8*40 4*500 4*12 6*16 6*24 8*30 10*32 8*250 2*2*2*6 8*12 8*18 10*24 16*20 10*200 2*2*4*6 12*12 12*20 2*160 20*100 2*2*2*12 2*2*6*6 2*120 2*2*2*40 2*1000 2*2*2*18 2*2*2*30 2*2*4*20 2*2*10*50 2*2*6*10 2*2*8*10 2*2*2*250 2*4*4*10 2*10*10*10 2*2*2*2*2*10
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
g:= proc(n, m, p) option remember; local F,r,x,i; # number of factorizations of n into even factors > m with number of factors == p (mod 2) if n = 1 then if p = 0 then return 1 else return 0 fi fi; if m > n or n::odd then return 0 fi; F:= sort(convert(select(t -> t > m and t::even, numtheory:-divisors(n)),list)); r:= 0; for x in F do for i from 1 while n mod x^i = 0 do r:= r + procname(n/x^i, x, (p+i) mod 2) od od; r end proc: f:= n -> g(4*n, 1, 0): map(f, [$1..100]); # Robert Israel, Mar 16 2023
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[4n],EvenQ[Length[#]]&&Select[#,OddQ]=={}&]],{n,100}]
-
PARI
A340786aux(n, m=n, p=0) = if(1==n, (0==p), my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A340786aux(n/d, d, 1-p))); (s)); A340786(n) = A340786aux(4*n); \\ Antti Karttunen, Apr 14 2022