cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A035363 Number of partitions of n into even parts.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0

Views

Author

Keywords

Comments

Convolved with A036469 = A000070. - Gary W. Adamson, Jun 09 2009
Note that these partitions are located in the head of the last section of the set of partitions of n (see A135010). - Omar E. Pol, Nov 20 2009
Number of symmetric unimodal compositions of n+2 where the maximal part appears twice, see example. Also number of symmetric unimodal compositions of n where the maximal part appears an even number of times. - Joerg Arndt, Jun 11 2013
Number of partitions of n having parts of even multiplicity. These are the conjugates of the partitions from the definition. Example: a(8)=5 because we have [4,4],[3,3,1,1],[2,2,2,2],[2,2,1,1,1,1], and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Jan 27 2016
From Gus Wiseman, May 22 2021: (Start)
The Heinz numbers of the conjugate partitions described in Emeric Deutsch's comment above are given by A000290.
For n > 1, also the number of integer partitions of n-1 whose only odd part is the smallest. The Heinz numbers of these partitions are given by A341446. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns shown as dots, A..D = 10..13) are:
1 . 3 . 5 . 7 . 9 . B . D
21 41 43 63 65 85
221 61 81 83 A3
421 441 A1 C1
2221 621 443 643
4221 641 661
22221 821 841
4421 A21
6221 4441
42221 6421
222221 8221
44221
62221
422221
2222221
Also the number of integer partitions of n whose greatest part is the sum of all the other parts. The Heinz numbers of these partitions are given by A344415. For example, the a(2) = 1 through a(12) = 11 partitions (empty columns not shown) are:
(11) (22) (33) (44) (55) (66)
(211) (321) (422) (532) (633)
(3111) (431) (541) (642)
(4211) (5221) (651)
(41111) (5311) (6222)
(52111) (6321)
(511111) (6411)
(62211)
(63111)
(621111)
(6111111)
Also the number of integer partitions of n of length n/2. The Heinz numbers of these partitions are given by A340387. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns not shown) are:
(2) (22) (222) (2222) (22222) (222222) (2222222)
(31) (321) (3221) (32221) (322221) (3222221)
(411) (3311) (33211) (332211) (3322211)
(4211) (42211) (333111) (3332111)
(5111) (43111) (422211) (4222211)
(52111) (432111) (4322111)
(61111) (441111) (4331111)
(522111) (4421111)
(531111) (5222111)
(621111) (5321111)
(711111) (5411111)
(6221111)
(6311111)
(7211111)
(8111111)
(End)

Examples

			From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02:  [ 1 1 1 1 3 3 1 1 1 1 ]
03:  [ 1 1 1 4 4 1 1 1 ]
04:  [ 1 1 2 3 3 2 1 1 ]
05:  [ 1 1 5 5 1 1 ]
06:  [ 1 2 4 4 2 1 ]
07:  [ 1 6 6 1 ]
08:  [ 2 2 3 3 2 2 ]
09:  [ 2 5 5 2 ]
10:  [ 3 4 4 3 ]
11:  [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01:  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03:  [ 1 1 1 1 3 3 1 1 1 1 ]
04:  [ 1 1 1 2 2 2 2 1 1 1 ]
05:  [ 1 1 1 4 4 1 1 1 ]
06:  [ 1 1 2 3 3 2 1 1 ]
07:  [ 1 1 5 5 1 1 ]
08:  [ 1 2 2 2 2 2 2 1 ]
09:  [ 1 2 4 4 2 1 ]
10:  [ 1 3 3 3 3 1 ]
11:  [ 1 6 6 1 ]
12:  [ 2 2 3 3 2 2 ]
13:  [ 2 5 5 2 ]
14:  [ 3 4 4 3 ]
15:  [ 7 7 ]
(End)
a(8)=5 because we  have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
  ()  .  (2)  .  (4)   .  (6)    .  (8)     .  (A)      .  (C)
                 (22)     (42)      (44)       (64)        (66)
                          (222)     (62)       (82)        (84)
                                    (422)      (442)       (A2)
                                    (2222)     (622)       (444)
                                               (4222)      (642)
                                               (22222)     (822)
                                                           (4422)
                                                           (6222)
                                                           (42222)
                                                           (222222)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.

Crossrefs

Bisection (even part) gives the partition numbers A000041.
Column k=0 of A103919, A264398.
Note: A-numbers of ranking sequences are in parentheses below.
The version for odd instead of even parts is A000009 (A066208).
The version for parts divisible by 3 instead of 2 is A035377.
The strict case is A035457.
The Heinz numbers of these partitions are given by A066207.
The ordered version (compositions) is A077957 prepended by (1,0).
This is column k = 2 of A168021.
The multiplicative version (factorizations) is A340785.
A000569 counts graphical partitions (A320922).
A004526 counts partitions of length 2 (A001358).
A025065 counts palindromic partitions (A265640).
A027187 counts partitions with even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).
The following count partitions of even length:
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Maple
    ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
    g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
    # next Maple program:
    a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
    seq(a(n), n=0..84);  # Alois P. Heinz, Jun 22 2021
  • Mathematica
    nmax = 50; s = Range[2, nmax, 2];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • Python
    from sympy import npartitions
    def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023

Formula

G.f.: Product_{k even} 1/(1 - x^k).
Convolution with the number of partitions into distinct parts (A000009, which is also number of partitions into odd parts) gives the number of partitions (A000041). - Franklin T. Adams-Watters, Jan 06 2006
If n is even then a(n)=A000041(n/2) otherwise a(n)=0. - Omar E. Pol, Nov 20 2009
G.f.: 1 + x^2*(1 - G(0))/(1-x^2) where G(k) = 1 - 1/(1-x^(2*k+2))/(1-x^2/(x^2-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A096441(n) - A000009(n), n >= 1. - Omar E. Pol, Aug 16 2013
G.f.: exp(Sum_{k>=1} x^(2*k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018

A236913 Number of partitions of 2n of type EE (see Comments).

Original entry on oeis.org

1, 1, 3, 6, 12, 22, 40, 69, 118, 195, 317, 505, 793, 1224, 1867, 2811, 4186, 6168, 9005, 13026, 18692, 26613, 37619, 52815, 73680, 102162, 140853, 193144, 263490, 357699, 483338, 650196, 870953, 1161916, 1544048, 2044188, 2696627, 3545015, 4644850, 6066425
Offset: 0

Views

Author

Clark Kimberling, Feb 01 2014

Keywords

Comments

The partitions of n are partitioned into four types:
EO, even # of odd parts and odd # of even parts, A236559;
OE, odd # of odd parts and even # of even parts, A160786;
EE, even # of odd parts and even # of even parts, A236913;
OO, odd # of odd parts and odd # of even parts, A236914.
A236559 and A160786 are the bisections of A027193;
A236913 and A236914 are the bisections of A027187.

Examples

			The partitions of 4 of type EE are [3,1], [2,2], [1,1,1,1], so that a(2) = 3.
type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11
EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0
OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29
EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0
OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27
From _Gus Wiseman_, Feb 09 2021: (Start)
This sequence counts even-length partitions of even numbers, which have Heinz numbers given by A340784. For example, the a(0) = 1 through a(4) = 12 partitions are:
  ()  (11)  (22)    (33)      (44)
            (31)    (42)      (53)
            (1111)  (51)      (62)
                    (2211)    (71)
                    (3111)    (2222)
                    (111111)  (3221)
                              (3311)
                              (4211)
                              (5111)
                              (221111)
                              (311111)
                              (11111111)
(End)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The ordered version is A000302.
The case of odd-length partitions of odd numbers is A160786 (A340931).
The Heinz numbers of these partitions are (A340784).
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A047993 counts balanced partitions (A106529).
A058695 counts partitions of odd numbers (A300063).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A072233 counts partitions by sum and length.
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0$3],
          `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p->
          `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]],
              [p[2], p[1], p[4], p[3]]))(b(n-i, i)))))
        end:
    a:= n-> b(2*n$2)[1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 16 2014
  • Mathematica
    z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,  OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,      OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]];
    m1 (* A236559, type EO*)
    m2 (* A160786, type OE*)
    m3 (* A236913, type EE*)
    m4 (* A236914, type OO*)
    (* Peter J. C. Moses, Feb 03 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0, 0, 0}, If[i < 1, {0, 0, 0, 0}, b[n, i - 1] + If[i > n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2] == 0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n - i, i]]]]]; a[n_] := b[2*n, 2*n][[1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[2n],EvenQ[Length[#]]&]],{n,0,15}] (* Gus Wiseman, Feb 09 2021 *)

Extensions

More terms from Alois P. Heinz, Feb 16 2014

A340784 Heinz numbers of even-length integer partitions of even numbers.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 39, 40, 46, 49, 55, 57, 62, 64, 81, 82, 84, 85, 87, 88, 90, 91, 94, 100, 111, 115, 118, 121, 129, 133, 134, 136, 144, 146, 155, 156, 159, 160, 166, 169, 183, 184, 187, 189, 194, 196, 198, 203, 205, 206, 210, 213, 218, 220
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are positive integers whose number of prime indices and sum of prime indices are both even, counting multiplicity in both cases.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 28 2024

Examples

			The sequence of partitions together with their Heinz numbers begins:
      1: ()            57: (8,2)            118: (17,1)
      4: (1,1)         62: (11,1)           121: (5,5)
      9: (2,2)         64: (1,1,1,1,1,1)    129: (14,2)
     10: (3,1)         81: (2,2,2,2)        133: (8,4)
     16: (1,1,1,1)     82: (13,1)           134: (19,1)
     21: (4,2)         84: (4,2,1,1)        136: (7,1,1,1)
     22: (5,1)         85: (7,3)            144: (2,2,1,1,1,1)
     25: (3,3)         87: (10,2)           146: (21,1)
     34: (7,1)         88: (5,1,1,1)        155: (11,3)
     36: (2,2,1,1)     90: (3,2,2,1)        156: (6,2,1,1)
     39: (6,2)         91: (6,4)            159: (16,2)
     40: (3,1,1,1)     94: (15,1)           160: (3,1,1,1,1,1)
     46: (9,1)        100: (3,3,1,1)        166: (23,1)
     49: (4,4)        111: (12,2)           169: (6,6)
     55: (5,3)        115: (9,3)            183: (18,2)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of prime powers is A056798.
These partitions are counted by A236913.
The odd version is A160786 (A340931).
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Squares (A000290) is a subsequence.
Not a subsequence of A329609 (30 is the first term of A329609 not occurring here, and 210 is the first term here not present in A329609).
Positions of even terms in A373381.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[PrimeOmega[#]]&&EvenQ[Total[primeMS[#]]]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
    isA340784(n) = A353331(n); \\ Antti Karttunen, Apr 14 2022

Formula

Intersection of A028260 and A300061.

A340785 Number of factorizations of 2n into even factors > 1.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 11, 1, 2, 1, 6, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 12, 1, 3, 1, 4, 1, 3, 1, 7, 1, 2, 1, 7, 1, 2, 1, 15, 1, 3, 1, 4, 1, 3, 1, 12, 1, 2, 1, 4, 1, 3, 1, 12, 1, 2, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Examples

			The a(n) factorizations for n = 2*2, 2*4, 2*8, 2*12, 2*16, 2*32, 2*36, 2*48 are:
  4    8      16       24     32         64           72      96
  2*2  2*4    2*8      4*6    4*8        8*8          2*36    2*48
       2*2*2  4*4      2*12   2*16       2*32         4*18    4*24
              2*2*4    2*2*6  2*2*8      4*16         6*12    6*16
              2*2*2*2         2*4*4      2*4*8        2*6*6   8*12
                              2*2*2*4    4*4*4        2*2*18  2*6*8
                              2*2*2*2*2  2*2*16               4*4*6
                                         2*2*2*8              2*2*24
                                         2*2*4*4              2*4*12
                                         2*2*2*2*4            2*2*4*6
                                         2*2*2*2*2*2          2*2*2*12
                                                              2*2*2*2*6
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The version for partitions is A035363 (A066207).
The odd version is A340101.
The even length case is A340786.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A316439 counts factorizations by product and length
A340102 counts odd-length factorizations of odd numbers into odd factors.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum.
A340601 counts partitions of even rank (A340602).
Even bisection of A349906.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[#,OddQ]=={}&]],{n,2,100,2}]
  • PARI
    A349906(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A349906(n/d, d))); (s));
    A340785(n) = A349906(2*n); \\ Antti Karttunen, Dec 13 2021

Formula

a(n) = A349906(2*n). - Antti Karttunen, Dec 13 2021

A340852 Numbers that can be factored in such a way that every factor is a divisor of the number of factors.

Original entry on oeis.org

1, 4, 16, 27, 32, 64, 96, 128, 144, 192, 216, 256, 288, 324, 432, 486, 512, 576, 648, 729, 864, 972, 1024, 1296, 1458, 1728, 1944, 2048, 2560, 2592, 2916, 3125, 3888, 4096, 5120, 5184, 5832, 6144, 6400, 7776, 8192, 9216, 11664, 12288, 12800, 13824, 15552
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also numbers that can be factored in such a way that the length is divisible by the least common multiple.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
For example, 24576 has three suitable factorizations:
  (2*2*2*2*2*2*2*2*2*2*2*12)
  (2*2*2*2*2*2*2*2*2*2*4*6)
  (2*2*2*2*2*2*2*2*2*3*4*4)
so is in the sequence.
		

Crossrefs

Partitions of this type are counted by A340693 (A340606).
These factorizations are counted by A340851.
The reciprocal version is A340853.
A143773 counts partitions whose parts are multiples of the number of parts.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A340785 counts factorizations into even numbers, even-length case A340786.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],And@@IntegerQ/@(Length[#]/#)&]!={}&]

A340851 Number of factorizations of n such that every factor is a divisor of the number of factors.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also factorizations whose number of factors is divisible by their least common multiple.

Examples

			The a(n) factorizations for n = 8192, 46656, 73728:
  2*2*2*2*2*4*8*8          6*6*6*6*6*6              2*2*2*2*2*2*2*2*2*4*6*6
  2*2*2*2*4*4*4*8          2*2*2*2*2*2*3*3*3*3*3*3  2*2*2*2*2*2*2*2*3*4*4*6
  2*2*2*4*4*4*4*4                                   2*2*2*2*2*2*2*3*3*4*4*4
  2*2*2*2*2*2*2*2*2*2*2*4                           2*2*2*2*2*2*2*2*2*2*6*12
                                                    2*2*2*2*2*2*2*2*2*3*4*12
		

Crossrefs

The version for partitions is A340693, with reciprocal version A143773.
Positions of nonzero terms are A340852.
The reciprocal version is A340853.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340785 counts factorizations into even numbers, even-length case A340786.
A340831/A340832 count factorizations with odd maximum/minimum.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],And@@IntegerQ/@(Length[#]/#)&]],{n,100}]

A340853 Number of factorizations of n such that every factor is a multiple of the number of factors.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also factorizations whose greatest common divisor is a multiple of the number of factors.

Examples

			The a(n) factorizations for n = 2, 4, 16, 48, 96, 144, 216, 240, 432:
  2   4     16    48     96     144     216      240     432
      2*2   2*8   6*8    2*48   2*72    4*54     4*60    6*72
            4*4   2*24   4*24   4*36    6*36     6*40    8*54
                  4*12   6*16   6*24    12*18    8*30    12*36
                         8*12   8*18    2*108    10*24   18*24
                                12*12   6*6*6    12*20   2*216
                                        3*3*24   2*120   4*108
                                        3*6*12           3*3*48
                                                         3*6*24
                                                         6*6*12
                                                         3*12*12
		

Crossrefs

Positions of 1's are A048103.
Positions of terms > 1 are A100716.
The version for partitions is A143773 (A316428).
The reciprocal for partitions is A340693 (A340606).
The version for strict partitions is A340830.
The reciprocal version is A340851.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340785 counts factorizations into even factors, even-length case A340786.
A340831/A340832 counts factorizations with odd maximum/minimum.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],n>1&&Divisible[GCD@@#,Length[#]]&]],{n,100}]
Showing 1-7 of 7 results.