cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340811 Array read by antidiagonals: T(n,k) is the number of unlabeled k-gonal 2-trees with n polygons, n >= 0, k >= 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 5, 6, 1, 1, 1, 3, 8, 12, 11, 1, 1, 1, 4, 11, 32, 39, 23, 1, 1, 1, 4, 16, 56, 141, 136, 47, 1, 1, 1, 5, 20, 103, 359, 749, 529, 106, 1, 1, 1, 5, 26, 158, 799, 2597, 4304, 2171, 235, 1, 1, 1, 6, 32, 245, 1539, 7286, 20386, 26492, 9368, 551
Offset: 0

Views

Author

Andrew Howroyd, Feb 02 2021

Keywords

Comments

See section 4 and table 1 in the Labelle reference.

Examples

			Array begins:
=======================================================
n\k |  2   3    4     5     6      7      8       9
----+--------------------------------------------------
  0 |  1   1    1     1     1      1      1       1 ...
  1 |  1   1    1     1     1      1      1       1 ...
  2 |  1   1    1     1     1      1      1       1 ...
  3 |  2   2    3     3     4      4      5       5 ...
  4 |  3   5    8    11    16     20     26      32 ...
  5 |  6  12   32    56   103    158    245     343 ...
  6 | 11  39  141   359   799   1539   2737    4505 ...
  7 | 23 136  749  2597  7286  16970  35291   66603 ...
  8 | 47 529 4304 20386 71094 199879 483819 1045335 ...
  ...
		

Crossrefs

Cf. A340812 (with oriented polygons).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    B(n,k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p}
    C(p,k)={p(1) - x*p(1)^k + x*sumdiv(k, d, eulerphi(d)*p(d)^(k/d))/k}
    S(p,k)={my(p2=p(2)); if(k%2, 1+x*Ser(EulerT(Vec(x*p2^(k\2) + x^2*(p2^(k-1) - p(4)^(k\2))/2 ))), my(r=p2^(k/2-1), q=1+O(x)); while(serprec(q,x)