cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340871 Primes p such that p, p + 1, p + 2 and p + 3 have 2, 4, 6 and 8 divisors respectively.

Original entry on oeis.org

421, 30661, 50821, 54421, 130021, 195541, 423781, 635461, 1003381, 1577941, 1597381, 1883941, 2070421, 2100661, 2162581, 2534821, 2585941, 2666581, 2851621, 3296581, 3658021, 3800581, 4657381, 4969141, 5739541, 5962741, 6188821, 6537301, 6556741, 7090261
Offset: 1

Views

Author

Jaroslav Krizek, Jan 24 2021

Keywords

Comments

Primes from A340157.
Term 1524085621 is the smallest prime p such that p, p + 1, p + 2, p + 3 and p + 4 have 2, 4, 6, 8 and 10 divisors respectively. No such run exists for any 6 consecutive integers with prime p with this property (see A294528).

Examples

			tau(421) = 2, tau (422) = 4, tau (423) = 6, tau (424) = 8.
		

Crossrefs

Programs

  • Magma
    [m: m in [1..10^7] | IsPrime(m) and #Divisors(m + 1) eq 4 and #Divisors(m + 2) eq 6 and #Divisors(m + 3) eq 8];
  • Mathematica
    Select[Range[10^6], DivisorSigma[0, # + {0, 1, 2, 3}] == {2, 4, 6, 8} &] (* Amiram Eldar, Jan 25 2021 *)
    Select[Prime[Range[490000]],DivisorSigma[0,#+{1,2,3}]=={4,6,8}&] (* Harvey P. Dale, Oct 02 2021 *)