A340871 Primes p such that p, p + 1, p + 2 and p + 3 have 2, 4, 6 and 8 divisors respectively.
421, 30661, 50821, 54421, 130021, 195541, 423781, 635461, 1003381, 1577941, 1597381, 1883941, 2070421, 2100661, 2162581, 2534821, 2585941, 2666581, 2851621, 3296581, 3658021, 3800581, 4657381, 4969141, 5739541, 5962741, 6188821, 6537301, 6556741, 7090261
Offset: 1
Keywords
Examples
tau(421) = 2, tau (422) = 4, tau (423) = 6, tau (424) = 8.
Programs
-
Magma
[m: m in [1..10^7] | IsPrime(m) and #Divisors(m + 1) eq 4 and #Divisors(m + 2) eq 6 and #Divisors(m + 3) eq 8];
-
Mathematica
Select[Range[10^6], DivisorSigma[0, # + {0, 1, 2, 3}] == {2, 4, 6, 8} &] (* Amiram Eldar, Jan 25 2021 *) Select[Prime[Range[490000]],DivisorSigma[0,#+{1,2,3}]=={4,6,8}&] (* Harvey P. Dale, Oct 02 2021 *)
Comments