cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A337165 Number T(n,k) of compositions of n into k nonzero squares; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 0, 5, 0, 0, 1, 0, 1, 0, 3, 0, 0, 6, 0, 0, 1, 0, 0, 2, 0, 6, 0, 0, 7, 0, 0, 1, 0, 0, 0, 3, 0, 10, 0, 0, 8, 0, 0, 1, 0, 0, 0, 1, 4, 0, 15, 0, 0, 9, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 03 2021

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 0, 1;
  0, 1, 0, 0, 1;
  0, 0, 2, 0, 0,  1;
  0, 0, 0, 3, 0,  0,  1;
  0, 0, 0, 0, 4,  0,  0, 1;
  0, 0, 1, 0, 0,  5,  0, 0, 1;
  0, 1, 0, 3, 0,  0,  6, 0, 0, 1;
  0, 0, 2, 0, 6,  0,  0, 7, 0, 0, 1;
  0, 0, 0, 3, 0, 10,  0, 0, 8, 0, 0, 1;
  0, 0, 0, 1, 4,  0, 15, 0, 0, 9, 0, 0, 1;
  ...
		

Crossrefs

Row sums give A006456.
T(2n,n) gives A338464.
Main diagonal gives A000012.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add((s->
         `if`(s>n, 0, expand(x*b(n-s))))(j^2), j=1..isqrt(n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..14);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[With[{s = j^2},
         If[s>n, 0, Expand[x*b[n - s]]]], {j, 1, Sqrt[n]}]];
    T[n_] := CoefficientList[b[n], x];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Feb 07 2021, after Alois P. Heinz *)

Formula

G.f. of column k: (Sum_{j>=1} x^(j^2))^k.
Sum_{k=0..n} k * T(n,k) = A281704(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A317665(n).

A340946 Number of ways to write n as an ordered sum of 9 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 9, 0, 0, 36, 0, 9, 84, 0, 72, 126, 0, 252, 135, 36, 504, 156, 252, 630, 288, 756, 576, 606, 1260, 756, 1207, 1260, 1584, 2052, 1008, 2727, 2688, 1764, 3663, 2718, 3816, 4608, 2853, 5418, 6048, 4620, 5868, 7506, 7464, 7308, 8442, 8958, 11088, 10404, 9684, 13986, 14184, 13020
Offset: 9

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..63);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 63; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^9/512, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: (theta_3(x) - 1)^9 / 512, where theta_3() is the Jacobi theta function.

A340481 Number of ways to write n as an ordered sum of 5 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 5, 0, 0, 10, 0, 5, 10, 0, 20, 5, 0, 30, 6, 10, 20, 20, 30, 5, 30, 30, 20, 35, 10, 60, 45, 0, 60, 50, 30, 45, 50, 60, 70, 35, 30, 110, 50, 31, 110, 80, 80, 50, 70, 120, 70, 75, 90, 140, 110, 20, 140, 160, 60, 135, 120, 120, 180, 40, 130, 230, 80, 120, 170, 200, 155, 85, 200, 190
Offset: 5

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..75);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 75; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^5/32, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (theta_3(x) - 1)^5 / 32, where theta_3() is the Jacobi theta function.

A340906 Number of ways to write n as an ordered sum of 7 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 7, 0, 0, 21, 0, 7, 35, 0, 42, 35, 0, 105, 28, 21, 140, 49, 105, 105, 106, 210, 84, 182, 210, 217, 287, 105, 420, 378, 126, 497, 392, 420, 532, 350, 630, 714, 434, 546, 980, 742, 609, 980, 896, 1071, 882, 875, 1470, 1239, 1099, 1155, 1722, 1652, 882, 1933, 1995, 1554, 2072, 1505
Offset: 7

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..67);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 67; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^7/128, {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: (theta_3(x) - 1)^7 / 128, where theta_3() is the Jacobi theta function.

A340915 Number of ways to write n as an ordered sum of 8 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 8, 0, 0, 28, 0, 8, 56, 0, 56, 70, 0, 168, 64, 28, 280, 84, 168, 280, 176, 420, 224, 345, 560, 392, 616, 420, 848, 924, 336, 1246, 1064, 868, 1464, 988, 1680, 1820, 1120, 1904, 2464, 1932, 1904, 2870, 2752, 2772, 2912, 2892, 4256, 3640, 3248, 4480, 5040, 4760, 3696, 6120
Offset: 8

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..64);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 64; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^8/256, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (theta_3(x) - 1)^8 / 256, where theta_3() is the Jacobi theta function.

A340947 Number of ways to write n as an ordered sum of 10 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 10, 0, 0, 45, 0, 10, 120, 0, 90, 210, 0, 360, 262, 45, 840, 300, 360, 1260, 480, 1260, 1350, 1015, 2520, 1560, 2200, 3150, 2880, 4186, 2880, 5430, 6240, 3780, 8300, 7080, 7920, 11160, 7320, 13257, 14640, 10600, 16470, 18570, 18240, 19620, 22230, 25135, 27720, 28020, 28480, 38160
Offset: 10

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 10):
    seq(a(n), n=10..62);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 62; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^10/1024, {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: (theta_3(x) - 1)^10 / 1024, where theta_3() is the Jacobi theta function.

A341367 Expansion of (1 / theta_4(x) - 1)^6 / 64.

Original entry on oeis.org

1, 12, 84, 442, 1932, 7392, 25551, 81468, 243126, 686400, 1848156, 4775874, 11904215, 28737732, 67416756, 154122912, 344177823, 752310720, 1612395007, 3393652848, 7023685794, 14311193104, 28737793986, 56924936052, 111323290934, 215095157964, 410895944148, 776529566516
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^6/64, {x, 0, nmax}], x] // Drop[#, 6] &
    nmax = 33; CoefficientList[Series[(1/64) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^6, {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: (1/64) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^6.

A341425 Number of positive solutions to (x_1)^2 + (x_2)^2 + ... + (x_6)^2 <= n^2.

Original entry on oeis.org

7, 48, 331, 1269, 3698, 9382, 20927, 42683, 79844, 142173, 238810, 387615, 603589, 915324, 1345294, 1939221, 2729723, 3783313, 5138567, 6895632, 9108626, 11909496, 15362753, 19642539, 24832744, 31179476, 38757032, 47877886, 58647957, 71447776, 86391220
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 11 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(n=0, 0,
          add((s->`if`(s>n, 0, b(n-s, k-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n^2, 6):
    seq(a(n), n=3..33);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x] - 1)^6/(64 (1 - x)), {x, 0, n^2}], {n, 3, 33}]

Formula

a(n) is the coefficient of x^(n^2) in expansion of (theta_3(x) - 1)^6 / (64 * (1 - x)).

A340988 Number of partitions of n into 6 distinct nonzero squares.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 3, 2, 0, 1, 2, 1, 1, 1, 0, 3, 0, 0, 4, 1, 0, 1
Offset: 91

Views

Author

Ilya Gutkovskiy, Feb 02 2021

Keywords

Crossrefs

A347713 Number of compositions (ordered partitions) of n into at most 6 squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 4, 6, 10, 8, 13, 20, 11, 22, 32, 22, 40, 31, 37, 74, 32, 50, 92, 64, 80, 74, 106, 122, 79, 126, 136, 166, 138, 98, 248, 188, 123, 236, 228, 258, 232, 192, 309, 350, 219, 266, 464, 340, 289, 379, 410, 480, 335, 400, 596, 542, 414, 394, 721, 626
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2021

Keywords

Crossrefs

Formula

a(n) = Sum_{k=0..6} A337165(n,k). - Alois P. Heinz, Sep 10 2021
Showing 1-10 of 10 results.