cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385716 Expansion of 1/((1-x) * (1-13*x))^(3/2).

Original entry on oeis.org

1, 21, 348, 5320, 78135, 1120287, 15805972, 220445316, 3047961735, 41857891075, 571725145992, 7774356136092, 105324231178621, 1422411298153125, 19157947746089520, 257427540725705056, 3451990965984505251, 46205867184493459023, 617482101788090727220, 8239952016851603641320
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{x}, CoefficientList[Series[1/((1-x)*(1-13*x))^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/((1-x)*(1-13*x))^(3/2))

Formula

n*a(n) = (14*n+7)*a(n-1) - 13*(n+1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 13^k * (2*k+1) * (2*(n-k)+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} 3^k * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = Sum_{k=0..n} (-3)^k * 13^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = binomial(n+2,2) * A386362(n).
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 9^k * 7^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} (7/2)^k * (-13/14)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k).
a(n) ~ sqrt(3*n) * 13^(n + 3/2) / (36*sqrt(Pi)). - Vaclav Kotesovec, Aug 21 2025

A340970 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(2*j,j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 33, 45, 1, 1, 9, 67, 245, 195, 1, 1, 11, 113, 721, 1921, 873, 1, 1, 13, 171, 1593, 8179, 15525, 3989, 1, 1, 15, 241, 2981, 23649, 95557, 127905, 18483, 1, 1, 17, 323, 5005, 54691, 361449, 1137709, 1067925, 86515, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2021

Keywords

Examples

			Square array begins:
  1,   1,     1,     1,      1,       1, ...
  1,   3,     5,     7,      9,      11, ...
  1,  11,    33,    67,    113,     171, ...
  1,  45,   245,   721,   1593,    2981, ...
  1, 195,  1921,  8179,  23649,   54691, ...
  1, 873, 15525, 95557, 361449, 1032801, ...
		

Crossrefs

Columns k=0..3 give A000012, A026375, A084771, A340973.
Rows n=0..2 give A000012, A005408, A080859.
Main diagonal gives A340971.
Cf. A340968.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * Binomial[2*j, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, k^j*binomial(n, j)*binomial(2*j, j));
    
  • PARI
    T(n, k) = polcoef((1+(2*k+1)*x+(k*x)^2)^n, n);

Formula

G.f. of column k: 1/sqrt((1 - x) * (1 - (4*k+1)*x)).
T(n,k) = [x^n] (1+(2*k+1)*x+(k*x)^2)^n.
n * T(n,k) = (2*k+1) * (2*n-1) * T(n-1,k) - (4*k+1) * (n-1) * T(n-2,k) for n > 1.
E.g.f. of column k: exp((2*k+1)*x) * BesselI(0,2*k*x). - Ilya Gutkovskiy, Feb 01 2021
From Seiichi Manyama, Aug 19 2025: (Start)
T(n,k) = (1/4)^n * Sum_{j=0..n} (4*k+1)^j * binomial(2*j,j) * binomial(2*(n-j),n-j).
T(n,k) = Sum_{j=0..n} (-k)^j * (4*k+1)^(n-j) * binomial(n,j) * binomial(2*j,j). (End)

A383951 Expansion of 1/sqrt((1-x)^3 * (1-13*x)).

Original entry on oeis.org

1, 8, 75, 796, 8975, 104532, 1242241, 14967680, 182172627, 2234388520, 27572562017, 341929238196, 4257601409425, 53196292831052, 666600870098895, 8374220026541296, 105432936550339523, 1329984626694890760, 16805828389675759921, 212684693606424187460, 2695304533342226489229
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Partial sums of A340973.

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/Sqrt((1- x)^3 * (1-13*x)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-x)^3*(1-13*x)],{x,0,33}],x] (* Vincenzo Librandi, Aug 27 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-x)^3*(1-13*x)))
    

Formula

n*a(n) = (14*n-6)*a(n-1) - 13*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 13^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} (-3)^k * 13^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} 3^k * binomial(2*k,k) * binomial(n+1,n-k).
Showing 1-3 of 3 results.