A340995 Triangle T(n,k) whose k-th column is the k-fold self-convolution of the Euler totient function phi; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 4, 8, 9, 4, 1, 0, 2, 16, 19, 14, 5, 1, 0, 6, 20, 42, 36, 20, 6, 1, 0, 4, 36, 72, 89, 60, 27, 7, 1, 0, 6, 44, 134, 184, 165, 92, 35, 8, 1, 0, 4, 68, 210, 376, 391, 279, 133, 44, 9, 1, 0, 10, 76, 348, 688, 880, 738, 441, 184, 54, 10, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 2, 5, 3, 1; 0, 4, 8, 9, 4, 1; 0, 2, 16, 19, 14, 5, 1; 0, 6, 20, 42, 36, 20, 6, 1; 0, 4, 36, 72, 89, 60, 27, 7, 1; 0, 6, 44, 134, 184, 165, 92, 35, 8, 1; 0, 4, 68, 210, 376, 391, 279, 133, 44, 9, 1; 0, 10, 76, 348, 688, 880, 738, 441, 184, 54, 10, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, numtheory[phi](n)), (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2)))) end: seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, EulerPhi[n]], With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n - j, k - q], {j, 0, n}]]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 13 2021, after Alois P. Heinz *)
Formula
T(n,k) = [x^n] (Sum_{j>=1} phi(j)*x^j)^k.