A341038 a(n) = Sum_{i+j<=m+1} d_i * d_j, where d_1 < ... < d_m are the divisors of n.
1, 5, 7, 17, 11, 39, 15, 49, 34, 59, 23, 144, 27, 79, 86, 129, 35, 198, 39, 219, 114, 119, 47, 436, 86, 139, 142, 287, 59, 523, 63, 321, 170, 179, 190, 760, 75, 199, 198, 676, 83, 690, 87, 423, 453, 239, 95, 1184, 162, 474, 254, 491, 107, 846, 278, 896, 282, 299, 119, 2061, 123, 319, 613, 769
Offset: 1
Examples
The divisors of 6 are 1,2,3,6, so a(6) = 1*(1+2+3+6)+2*(1+2+3)+3*(1+2)+6*1 = 39.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A341039
Programs
-
Maple
f:= proc(n) local D,S,i; D:= sort(convert(numtheory:-divisors(n),list)); S:= ListTools:-PartialSums(D); add(S[-i]*D[i],i=1..nops(D)) end proc: map(f, [$1..100]);
-
PARI
a(n) = my(d=divisors(n)); sum(k=1, #d, d[k]*sum(i=1, #d-k+1, d[i])); \\ Michel Marcus, Feb 04 2021
Comments