cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341038 a(n) = Sum_{i+j<=m+1} d_i * d_j, where d_1 < ... < d_m are the divisors of n.

Original entry on oeis.org

1, 5, 7, 17, 11, 39, 15, 49, 34, 59, 23, 144, 27, 79, 86, 129, 35, 198, 39, 219, 114, 119, 47, 436, 86, 139, 142, 287, 59, 523, 63, 321, 170, 179, 190, 760, 75, 199, 198, 676, 83, 690, 87, 423, 453, 239, 95, 1184, 162, 474, 254, 491, 107, 846, 278, 896, 282, 299, 119, 2061, 123, 319, 613, 769
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 03 2021

Keywords

Comments

If p is prime, a(p^k) = k*p^(k+1)/(p-1) + ((p-2)*p^(k+1)+1)/(p-1)^2.
If p < q are primes, a(p*q) = 1 + 2*p + 2*q + p^2 + 4*p*q.

Examples

			The divisors of 6 are 1,2,3,6, so a(6) = 1*(1+2+3+6)+2*(1+2+3)+3*(1+2)+6*1 = 39.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local D,S,i;
      D:= sort(convert(numtheory:-divisors(n),list));
      S:= ListTools:-PartialSums(D);
      add(S[-i]*D[i],i=1..nops(D))
    end proc:
    map(f, [$1..100]);
  • PARI
    a(n) = my(d=divisors(n)); sum(k=1, #d, d[k]*sum(i=1, #d-k+1, d[i])); \\ Michel Marcus, Feb 04 2021