A341122
Number of partitions of n into 4 prime powers (including 1).
Original entry on oeis.org
1, 1, 2, 3, 5, 5, 8, 9, 12, 13, 17, 17, 22, 22, 26, 27, 33, 31, 39, 38, 44, 43, 51, 47, 58, 54, 63, 60, 71, 64, 79, 74, 88, 82, 99, 88, 108, 97, 116, 105, 126, 110, 134, 119, 141, 126, 153, 133, 164, 143, 172, 149, 184, 155, 194, 168, 204, 173, 215, 180, 227, 192, 238
Offset: 4
-
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
end:
a:= n-> b(n$2, 4):
seq(a(n), n=4..66); # Alois P. Heinz, Feb 05 2021
-
q[n_] := q[n] = Length[FactorInteger[n]] < 2;
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
a[n_] := b[n, n, 4];
Table[a[n], {n, 4, 66}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)
A341124
Number of partitions of n into 6 prime powers (including 1).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 12, 17, 20, 27, 31, 41, 45, 56, 63, 77, 83, 101, 108, 128, 136, 160, 168, 196, 204, 236, 245, 281, 288, 331, 340, 387, 395, 450, 457, 519, 525, 594, 598, 677, 678, 763, 764, 855, 851, 957, 949, 1062, 1053, 1177, 1161, 1300, 1276, 1425, 1403, 1564
Offset: 6
-
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
end:
a:= n-> b(n$2, 6):
seq(a(n), n=6..62); # Alois P. Heinz, Feb 05 2021
-
q[n_] := q[n] = Length[FactorInteger[n]] < 2;
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
a[n_] := b[n, n, 6];
Table[a[n], {n, 6, 62}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)
A341112
Number of partitions of n into 3 prime powers (including 1).
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 6, 6, 8, 8, 10, 9, 12, 10, 13, 12, 15, 13, 17, 15, 18, 15, 19, 16, 21, 17, 23, 18, 24, 19, 27, 23, 30, 24, 32, 25, 32, 26, 34, 26, 36, 26, 36, 28, 38, 28, 40, 30, 42, 32, 43, 30, 45, 32, 47, 35, 49, 30, 50, 35, 51, 36, 53, 35, 55, 37, 54, 40, 57, 36, 61, 40, 61
Offset: 3
Cf.
A000961,
A010055,
A071330,
A282064,
A307727,
A307825,
A341122,
A341123,
A341124,
A341125,
A341126,
A341127.
-
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
end:
a:= n-> b(n$2, 3):
seq(a(n), n=3..75); # Alois P. Heinz, Feb 05 2021
-
q[n_] := q[n] = Length[FactorInteger[n]] < 2;
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
a[n_] := b[n, n, 3];
Table[a[n], {n, 3, 75}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)
A341125
Number of partitions of n into 7 prime powers (including 1).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 13, 18, 22, 30, 35, 47, 54, 68, 78, 97, 107, 132, 146, 173, 190, 225, 242, 285, 305, 352, 377, 434, 456, 525, 553, 627, 659, 748, 778, 881, 916, 1028, 1068, 1197, 1232, 1381, 1421, 1578, 1619, 1801, 1837, 2041, 2079, 2296, 2337, 2583, 2613
Offset: 7
-
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
end:
a:= n-> b(n$2, 7):
seq(a(n), n=7..60); # Alois P. Heinz, Feb 05 2021
-
q[n_] := q[n] = Length[FactorInteger[n]] < 2;
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
a[n_] := b[n, n, 7];
Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)
A341126
Number of partitions of n into 8 prime powers (including 1).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 13, 19, 23, 32, 38, 51, 60, 77, 90, 113, 128, 158, 179, 215, 240, 287, 316, 373, 409, 475, 517, 599, 645, 741, 799, 908, 971, 1104, 1173, 1326, 1408, 1580, 1670, 1874, 1967, 2198, 2310, 2563, 2680, 2976, 3097, 3426, 3566, 3926, 4070, 4485
Offset: 8
-
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
end:
a:= n-> b(n$2, 8):
seq(a(n), n=8..60); # Alois P. Heinz, Feb 05 2021
-
q[n_] := q[n] = Length[FactorInteger[n]] < 2;
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
a[n_] := b[n, n, 8];
Table[a[n], {n, 8, 60}] (* Jean-François Alcover, Feb 22 2022, after _Alois P. Heinz *)
A341127
Number of partitions of n into 9 prime powers (including 1).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 13, 19, 24, 33, 40, 54, 64, 83, 99, 125, 144, 180, 206, 250, 284, 341, 383, 455, 506, 593, 656, 762, 835, 965, 1054, 1206, 1309, 1491, 1610, 1825, 1964, 2213, 2374, 2664, 2843, 3179, 3387, 3769, 3998, 4440, 4695, 5194, 5480, 6043, 6357
Offset: 9
-
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
end:
a:= n-> b(n$2, 9):
seq(a(n), n=9..60); # Alois P. Heinz, Feb 05 2021
-
q[n_] := q[n] = Length[FactorInteger[n]] < 2;
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
a[n_] := b[n, n, 9];
Table[a[n], {n, 9, 60}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)
A341142
Number of partitions of n into 5 distinct prime powers (including 1).
Original entry on oeis.org
1, 0, 1, 2, 3, 3, 5, 5, 7, 8, 10, 12, 15, 15, 18, 21, 23, 26, 31, 33, 36, 41, 43, 48, 52, 58, 62, 72, 72, 82, 85, 95, 97, 112, 112, 125, 127, 142, 142, 161, 159, 181, 180, 200, 196, 222, 217, 243, 239, 269, 261, 291, 284, 316, 308, 341, 332, 370, 358, 394, 381, 427, 414, 456
Offset: 15
-
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(q(i), b(n-i, min(n-i, i-1), t-1), 0)))
end:
a:= n-> b(n$2, 5):
seq(a(n), n=15..78); # Alois P. Heinz, Feb 05 2021
-
q[n_] := q[n] = PrimeNu[n] < 2;
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
a[n_] := b[n, n, 5];
Table[a[n], {n, 15, 78}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *)
Table[Count[IntegerPartitions[n,{5}],?(Max[PrimeNu[#]]<2&&Length[#]==Length[Union[#]]&)],{n,15,80}] (* _Harvey P. Dale, Dec 22 2024 *)
A341134
Number of ways to write n as an ordered sum of 5 prime powers (including 1).
Original entry on oeis.org
1, 5, 15, 35, 70, 121, 190, 280, 395, 535, 711, 920, 1160, 1425, 1725, 2041, 2395, 2775, 3200, 3645, 4146, 4640, 5190, 5730, 6325, 6915, 7625, 8270, 9030, 9745, 10576, 11320, 12320, 13185, 14305, 15281, 16510, 17480, 18855, 19835, 21306, 22435, 24010, 25025, 26810, 27790, 29590
Offset: 5
Cf.
A000961,
A010055,
A282062,
A282064,
A341123,
A341133,
A341135,
A341136,
A341137,
A341138,
A341139.
-
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, t) option remember;
`if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
`if`(q(j), b(n-j, t-1), 0), j=1..n)))
end:
a:= n-> b(n, 5):
seq(a(n), n=5..51); # Alois P. Heinz, Feb 05 2021
-
nmax = 51; CoefficientList[Series[Sum[Boole[PrimePowerQ[k] || k == 1] x^k, {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &
A365877
a(n) is the number of quadratic equations u*x^2 + v*x + w = 0 with distinct solution sets L != {} and integer coefficients u, v, w, where n >= abs(u) + abs(v) + abs(w) and the sum of the solutions equals the product of the solutions.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 9, 11, 15, 17, 23, 25, 32, 35, 40, 44, 53, 56, 66, 71, 78, 83, 95, 100, 111, 117, 127, 134, 150, 154, 171, 180, 191, 199, 213, 220, 240, 250, 263, 272, 294, 301, 324, 335, 348, 360, 386, 395, 419, 430, 448, 461, 490, 500, 522, 536, 556, 571, 603
Offset: 1
For n = 11 the a(11) = 23 equations are given by (u, v, w) = (1, 0, 0), (1, 1, -1), (2, 1, -1), (1, 2, -2), (3, 1, -1), (4, 1, -1), (5, 1, -1), (3, 2, -2), (1, 3, -3), (6, 1, -1), (2, 3, -3), (7, 1, -1), (5, 2, -2), (1, 4, -4), (-1, 4, -4), (8, 1, -1), (4, 3, -3), (9, 1, -1), (7, 2, -2), (5, 3, -3), (3, 4, -4), (1, 5, -5), (-1, 5, -5).
Equations multiplied by -1 do not have a different solution set; for example, (- 1, -1, 1) has the same solution set as (1, 1, -1).
Equations with GCD(u, v, w) != 1 are excluded, because their solution set are assigned to equations with lower n. For example, (2, 0, 0) is not included here, because its solution set is already assigned to (1, 0, 0).
Equations with a double solution are considered to have two equal solutions. For example, (-1, 4, -4) has the two solutions x_1 = x_2 = 2.
-
A365876:= proc(n) local u, v, a, min; u := n; v := 0; a := 0; min := true; while min = true do if u <> 0 and gcd(u, v) = 1 then a := a + 1; end if; u := u - 2; v:=(n-abs(u))/2; if u < -1/9*n then min := false; end if; end do; return a; end proc;
A365877:= proc(n) local s; option remember; if n = 1 then A365876(1); else procname(n - 1) + A365876(n); end if; end proc; seq(A365877(n), n = 1 .. 59);
-
from math import gcd
def A365877(n):
if n == 1: return 1
c = 1
for m in range(2,n+1):
for v in range(1,m+1>>1):
u = m-(v<<1)
if gcd(u,v)==1:
v2, u2 = v*v, v*(u<<2)
if v2+u2 >= 0:
c +=1
if v2-u2 >= 0:
c +=1
return c # Chai Wah Wu, Oct 05 2023
A347646
Number of partitions of n into at most 5 prime powers (including 1).
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 9, 12, 16, 20, 24, 30, 35, 42, 47, 55, 62, 71, 77, 88, 96, 107, 114, 127, 135, 149, 156, 173, 180, 198, 205, 224, 233, 254, 262, 287, 297, 321, 330, 358, 366, 396, 403, 436, 441, 478, 478, 517, 521, 560, 562, 609, 607, 655, 655, 702, 699, 756, 746
Offset: 0
Showing 1-10 of 11 results.
Comments