A341208 a(n) = F(n+4) * F(n+1) - 4 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers.
9, 12, 43, 101, 276, 711, 1873, 4892, 12819, 33549, 87844, 229967, 602073, 1576236, 4126651, 10803701, 28284468, 74049687, 193864609, 507544124, 1328767779, 3478759197, 9107509828, 23843770271, 62423801001, 163427632716, 427859097163, 1120149658757
Offset: 1
Examples
For n = 2, a(2) = F(2+4) * F(2+1) - 4 * (-1)^2 = 8 * 2 - 4 = 12.
References
- Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 51.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
PARI
a(n) = fibonacci(n+4)*fibonacci(n+1) - 4*(-1)^n; \\ Michel Marcus, Feb 06 2021
Formula
a(n) = F(n+4) * F(n+1) - 4 * (-1)^n for n > 0.
G.f.: x*(9 - 6*x + x^2)/(1 - 2*x - 2*x^2 + x^3).
Comments