cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A329603 a(n) = A005940(1+(1+(3*A156552(n)))) = (1/2) * A005940(1+(3*A156552(2*n))).

Original entry on oeis.org

2, 5, 8, 15, 18, 11, 50, 45, 20, 125, 98, 33, 242, 245, 32, 135, 338, 77, 578, 375, 72, 605, 722, 99, 42, 845, 60, 735, 1058, 17, 1682, 405, 200, 1445, 162, 231, 1922, 1805, 392, 1125, 2738, 1331, 3362, 1815, 44, 2645, 3698, 297, 110, 275, 968, 2535, 4418, 539, 450, 2205, 1352, 4205, 5618, 51, 6962, 4805, 500, 1215, 882, 1859, 7442, 4335, 2312
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Comments

Function n -> 3n+1 (A016777) conjugated by A156552. - Antti Karttunen, Aug 21 2021

Crossrefs

Permutation of A329604.
A skewed diagonal of A341510.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = ((1/2)*A005940(1+(3*A156552(2*n))));
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime, primepi, factorint
    def A329603(n): return prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(1+3*sum((1<Chai Wah Wu, Mar 11 2023

Formula

a(n) = (1/2) * A005940(1+(3*A156552(2*n))).
From Antti Karttunen, Feb 14 2021: (Start)
A156552(2*a(n)) = 3*A156552(2*n) = 3*(1+2*A156552(n)) = 3 + 6*A156552(n).
a(n) = A341510(n,2n) = A005940(1+A156552(n)+A156552(2n)) = A005940(1+(1+(3*A156552(n)))).
a(n) = A005940(1+A016777(A156552(n))).
For all n >= 1, A329903(a(n)) = A332814(a(n)) = A332823(A332461(a(n))) = 1.
For all n >= 1, A341354(a(n)) > 0.
For all n >= 1, A000035(a(n)) = 1 - A000035(n). [Flips the parity of n]
(End)
a(n) = A332449(2*n)/2, a(n) = Sum_{d|n} A347117(d). - Antti Karttunen, Aug 21 2021

Extensions

New primary definition added by Antti Karttunen, Feb 14 2021

A341353 Greatest k such that 3^k divides A156552(n); the 3-adic valuation of A156552(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 3, 3, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0
Offset: 2

Views

Author

Antti Karttunen, Feb 14 2021

Keywords

Crossrefs

Cf. A007949, A156552, A329609 (positions of nonzeros), A329903, A341354 (even bisection), A341355.
Cf. also A055396 (the 2-adic valuation + 1), A292251.

Programs

  • PARI
    A007949(n) = valuation(n,3);
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A341353(n) = A007949(A156552(n));

Formula

a(n) = A007949(A156552(n)).
a(p) = 0 for all primes p.
a(n^2) > 0 for all n >= 2.
a(n) > 0 iff A329903(n) = 0.

A341355 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(1) = 1 and for n > 1, f(n) = [A341353(n), A341353(2*n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 3, 2, 4, 6, 2, 3, 3, 3, 2, 4, 2, 7, 3, 2, 6, 4, 7, 3, 4, 3, 3, 3, 3, 4, 2, 5, 2, 4, 3, 8, 3, 3, 4, 4, 2, 2, 3, 7, 5, 8, 5, 3, 4, 2, 5, 3, 3, 3, 6, 3, 4, 3, 2, 2, 3, 4, 3, 6, 3, 4, 2, 2, 2, 3, 3, 2, 5, 3, 3, 3, 9, 2, 3, 2, 4, 4, 2, 4, 4, 3, 8, 8, 3, 6, 6, 2, 2, 6, 3, 3, 2, 5, 2, 4, 3, 6, 9, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2021

Keywords

Comments

For all i, j: a(i) = a(j) => A329903(i) = A329903(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007949(n) = valuation(n,3);
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A341353(n) = A007949(A156552(n));
    Aux341355(n) = if(1==n,1, [A341353(n), A341353(2*n)]);
    v341355 = rgs_transform(vector(up_to, n, Aux341355(n)));
    A341355(n) = v341355[n];
Showing 1-3 of 3 results.