cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341557 Fourier coefficients of the modular form (1/t_{3A}) * F_{3A}^12.

Original entry on oeis.org

0, 1, 30, 333, 1444, -570, -21114, -22576, 121848, 64233, -276300, 589260, -1198764, 133766, -957216, 2920590, 2491792, -1616958, 1647054, -5312428, -14819880, -4158576, 20300904, 16879848, 19051416, -22583225, 38165172, -81066987, -47716288, 66118494, 370980, -51834232
Offset: 0

Views

Author

Robert C. Lyons, Feb 14 2021

Keywords

Crossrefs

Formula

Convolution product of 1/A030197 and A008655^3. - Georg Fischer, Mar 31 2023

Extensions

More terms from Georg Fischer, Mar 31 2023

A341558 Fourier coefficients of the modular form (1/t_{3A}^2) * F_{3A}^12.

Original entry on oeis.org

0, 0, 1, -12, 54, -100, 45, -108, 692, -108, -2970, 1012, 4542, 13176, -25168, -33660, 27864, 97944, 61641, -295812, -142780, 227172, 613548, -32656, -1181916, 54000, 449990, 1389960, -1340064, -1153484, 2112750, 18684, 1743312, -6661260, 733698, 2254360, 3347622
Offset: 0

Views

Author

Robert C. Lyons, Feb 14 2021

Keywords

Crossrefs

Formula

1/t_{3A} is A030197, F_{3A} is A004016. - Georg Fischer, Mar 31 2023

Extensions

More terms from Georg Fischer, Mar 31 2023

A341561 Fourier coefficients of the modular form (1/t_{3A}) * F_{3A}^16.

Original entry on oeis.org

0, 1, 54, 1269, 16804, 134406, 628398, 1311968, -1701864, -14345991, -16443324, 25426764, 11246580, 16601078, 505866816, -113853762, -1326884336, 1507092642, -3873575034, 100819028, 2685180888, 6885133920, -20849400, 10111254408, -10371867912, -412371305, -58625773596
Offset: 0

Views

Author

Robert C. Lyons, Feb 14 2021

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if n==0: return 0
        eta = x^(1/24)*product([(1 - x^k) for k in range(1, n)])
        t3A = ((eta/eta(x=x^3))^12 + 27)^2/(eta/eta(x=x^3))^12
        F3A = sum([rising_factorial(1/6, k)*rising_factorial(1/3, k)/
          (rising_factorial(1,k)^2)*(108/t3A)^k for k in range(n)])
        f = F3A^16/t3A
        return f.taylor(x,0,n).coefficients()[n-1][0]  # Robin Visser, Jul 23 2023

Formula

Convolution product of 1/A030197 and A008655^4. - Georg Fischer, Mar 30 2023

Extensions

More terms from Georg Fischer, Mar 30 2023
Showing 1-3 of 3 results.