A341561 Fourier coefficients of the modular form (1/t_{3A}) * F_{3A}^16.
0, 1, 54, 1269, 16804, 134406, 628398, 1311968, -1701864, -14345991, -16443324, 25426764, 11246580, 16601078, 505866816, -113853762, -1326884336, 1507092642, -3873575034, 100819028, 2685180888, 6885133920, -20849400, 10111254408, -10371867912, -412371305, -58625773596
Offset: 0
Keywords
Links
- Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. Sloane wrote 2005 on the first page but the internal evidence suggests 1997.] See page 30.
Programs
-
Sage
def a(n): if n==0: return 0 eta = x^(1/24)*product([(1 - x^k) for k in range(1, n)]) t3A = ((eta/eta(x=x^3))^12 + 27)^2/(eta/eta(x=x^3))^12 F3A = sum([rising_factorial(1/6, k)*rising_factorial(1/3, k)/ (rising_factorial(1,k)^2)*(108/t3A)^k for k in range(n)]) f = F3A^16/t3A return f.taylor(x,0,n).coefficients()[n-1][0] # Robin Visser, Jul 23 2023
Formula
Extensions
More terms from Georg Fischer, Mar 30 2023