A341660 Primes p such that p^2 - 1 has fewer than 32 divisors.
2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 47, 73
Offset: 1
Examples
p = factorization n a(n) p^2 - 1 of p^2 - 1 tau(p^2 - 1) -- ---- ------- -------------- ------------ 1 2 3 3 2 2 3 8 2^3 4 3 5 24 2^3 * 3 8 4 7 48 2^4 * 3 10 5 11 120 2^3 * 3 * 5 16 6 13 168 2^3 * 3 * 7 16 7 17 288 2^5 * 3^2 18 8 19 360 2^3 * 3^2 * 5 24 9 23 528 2^4 * 3 * 11 20 10 31 960 2^6 * 3 * 5 28 11 37 1368 2^3 * 3^2 * 19 24 12 47 2208 2^5 * 3 * 23 24 13 73 5328 2^4 * 3^2 * 37 30
Programs
-
Mathematica
Select[Range[100], PrimeQ[#] && DivisorSigma[0, #^2 - 1] < 32 &] (* Amiram Eldar, Feb 26 2021 *)
Comments