A341702 a(n) is the smallest k < n such that the decimal concatenation n||n-1||n-2||...||n-k is prime, or -1 if no such prime exists.
-1, -1, 0, 0, 1, 0, -1, 0, -1, -1, 1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, 1, 0, 1, 12, -1, 4, -1, 0, -1, 0, -1, -1, 1, -1, -1, 0, -1, -1, -1, 0, 1, 0, -1, -1, 7, 0, 7, -1, -1, 4, 15, 0, -1, 12, 9, -1, 1, 0, 13, 0, -1, -1, -1, -1, -1, 0, 57, -1, 1, 0, -1, 0
Offset: 0
Examples
a(10) = 1 since 109 is prime. a(22) = 1 since 2221 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
Programs
-
Maple
tcat:= proc(x,y) x*10^(1+ilog10(y))+y end proc: f:= proc(n) local x,k; x:= n; for k from 0 to n-1 do if isprime(x) then return k fi; x:= tcat(x,n-k-1) od; -1 end proc: map(f, [$0..100]); # Robert Israel, Mar 02 2022
-
PARI
a(n) = my(k=0, s=Str(n)); while (!isprime(eval(s)), k++; n--; if (k>=n, return(-1)); s = concat(s, Str(n-k))); return(k); \\ Michel Marcus, Mar 02 2022
-
Python
from sympy import isprime def A341702(n): k, m = n, n-1 while not isprime(k) and m > 0: k = int(str(k)+str(m)) m -= 1 return n-m-1 if isprime(k) else -1
Formula
a(n) = n-A341701(n).
a(p) = 0 if and only if p is prime.
Comments