cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341703 a(n) = 6*binomial(n,4) + 2*binomial(n,2) + 1.

Original entry on oeis.org

1, 1, 3, 7, 19, 51, 121, 253, 477, 829, 1351, 2091, 3103, 4447, 6189, 8401, 11161, 14553, 18667, 23599, 29451, 36331, 44353, 53637, 64309, 76501, 90351, 106003, 123607, 143319, 165301, 189721, 216753, 246577, 279379, 315351, 354691, 397603, 444297, 494989, 549901
Offset: 0

Views

Author

Enrique Navarrete, Feb 17 2021

Keywords

Comments

a(n) is the number of ternary strings of length n that contain either none or two 0's and either none or two 1's.

Examples

			a(6)=121 since the strings are the 90 permutations of 110022, the 15 permutations of 002222, the 15 permutations of 112222, and 222222.
		

Crossrefs

Formula

E.g.f.: exp(x)*(1 + x^2/2)^2.
From Stefano Spezia, Feb 19 2021: (Start)
O.g.f.:(1 - 4*x + 8*x^2 - 8*x^3 + 9*x^4)/(1 - x)^5.
a(n) = (4 - 10*n + 15*n^2 - 6*n^3 + n^4)/4. (End)
a(n) = 2*A004255(n-1) + 1. - Hugo Pfoertner, Feb 19 2021

A341705 a(n) = 70*binomial(n,8) + 2*binomial(n,4) + 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 31, 71, 211, 883, 3571, 12211, 35641, 91521, 212213, 453181, 904541, 1706461, 3069181, 5298493, 8827591, 14256271, 22398531, 34339691, 51504223, 75735551, 109389151, 155440351, 217608301, 300497653, 409759561, 552273681, 736352921, 971972761
Offset: 0

Views

Author

Enrique Navarrete, Feb 17 2021

Keywords

Comments

a(n) is the number of ternary strings of length n that contain either none or four 0's and either none or four 1's.

Examples

			a(9)=883 since the strings are the 630 permutations of 000011112, the 126 permutations of 000022222, the 126 permutations of 111122222, and 222222222.
		

Crossrefs

Formula

E.g.f.: exp(x)*(1 + x^4/24)^2.
O.g.f.:(1 - 8*x + 28*x^2 - 56*x^3 + 72*x^4 - 64*x^5 + 40*x^6 - 16*x^7 + 73*x^8)/(1 - x)^9. - Stefano Spezia, Feb 19 2021
Showing 1-2 of 2 results.