cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A341774 Number of partitions of n into 3 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 2
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

A341775 Number of partitions of n into 4 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 2, 2, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 1, 2, 2, 0, 0, 2, 1, 1, 2, 0, 0, 3, 1, 0, 2, 1, 1
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

A341776 Number of partitions of n into 5 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 2, 1, 0, 2, 1, 0, 1, 1, 0, 2, 2, 0, 1, 2, 0, 1, 2, 0, 1, 3, 1, 1, 2, 1, 0, 3, 1, 1, 3, 2, 0, 2, 1, 0, 2, 2, 0, 3, 2, 1, 2, 2, 1, 2, 2, 1, 3, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 3, 1, 2, 3, 1, 1, 4, 1, 2, 3, 1, 0, 4, 2
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

A341778 Number of partitions of n into 7 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 1, 0, 3, 1, 0, 2, 1, 0, 3, 2, 0, 2, 2, 0, 2, 3, 0, 2, 4, 1, 2, 3, 1, 1, 4, 1, 2, 4, 2, 1, 4, 2, 1, 4, 3, 1, 5, 3, 2, 4, 3, 1, 4, 3, 2, 5, 4, 2, 4, 4, 2, 4, 4, 2, 5, 5, 3, 4, 5, 2, 4, 5, 3, 4, 7, 3, 4, 6, 3, 3, 7, 3, 4, 7, 4
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

A341797 Number of ways to write n as an ordered sum of 6 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 6, 0, 0, 15, 0, 0, 26, 0, 0, 45, 0, 0, 66, 0, 0, 76, 6, 0, 90, 30, 0, 96, 60, 0, 80, 90, 0, 75, 150, 0, 60, 192, 0, 35, 210, 15, 30, 270, 60, 15, 270, 90, 6, 270, 120, 6, 306, 195, 0, 240, 210, 1, 246, 270, 20, 240, 360, 60, 180, 330, 60, 216, 450, 80, 210, 435, 120, 216, 360
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..20]])^6 )); // G. C. Greubel, Jul 20 2022
    
  • Mathematica
    nmax = 77; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^6, {x, 0, nmax}], x] // Drop[#, 6] &
  • SageMath
    def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..20) ) )^m
    def A341797_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(6, x) ).list()
    a=A341797_list(100); a[6:81] # G. C. Greubel, Jul 20 2022

Formula

G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^6.

A341791 Number of partitions of n into 8 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 1, 0, 3, 1, 0, 3, 1, 0, 3, 2, 0, 3, 2, 0, 2, 3, 0, 3, 4, 1, 2, 4, 1, 2, 4, 1, 2, 5, 2, 2, 4, 2, 1, 5, 3, 2, 6, 4, 2, 5, 3, 2, 5, 4, 2, 6, 4, 3, 5, 5, 2, 5, 5, 4, 6, 6, 3, 6, 6, 3, 5, 6, 3, 6, 8, 4, 5, 8, 4, 5, 8, 4, 5, 10
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

A341792 Number of partitions of n into 9 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 1, 0, 3, 1, 0, 3, 1, 0, 4, 2, 0, 3, 2, 0, 3, 3, 0, 3, 4, 1, 3, 4, 1, 2, 5, 1, 3, 5, 2, 2, 5, 2, 2, 5, 3, 2, 7, 4, 3, 6, 4, 2, 6, 4, 3, 7, 5, 3, 6, 5, 3, 6, 6, 4, 7, 7, 5, 7, 7, 3, 7, 7, 5, 7, 9, 4, 7, 9, 5, 6, 10, 5, 8
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

A341793 Number of partitions of n into 10 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 1, 0, 3, 1, 0, 3, 1, 0, 4, 2, 0, 4, 2, 0, 3, 3, 0, 4, 4, 1, 3, 4, 1, 3, 5, 1, 3, 6, 2, 3, 5, 2, 2, 6, 3, 3, 7, 4, 3, 7, 4, 3, 7, 5, 3, 8, 5, 4, 7, 6, 3, 7, 6, 5, 8, 8, 5, 8, 8, 5, 8, 8, 5, 9, 10, 6, 8, 10, 5, 8, 11, 7
Offset: 10

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

A341773 Number of partitions of 2*n into exactly n nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 1, 0, 3, 1, 0, 3, 1, 0, 4, 2, 0, 4, 2, 0, 4, 3, 0, 5, 4, 1, 5, 4, 1, 5, 5, 1, 6, 6, 2, 6, 6, 2, 6, 7, 3, 7, 9, 4, 8, 9, 4, 8, 10, 5, 9, 12, 6, 10, 12, 7, 10, 13, 8, 12, 15, 10, 13, 16, 11, 13, 17, 12
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1/(1 - x^(Binomial[k + 4, 3] - 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1 / (1 - x^(binomial(k+4,3)-1)).
Showing 1-9 of 9 results.