cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341880 Number of ordered factorizations of n into 4 factors > 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 12, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 16, 1, 0, 0, 12, 0, 0, 0, 4, 0, 12, 0, 0, 0, 0, 0, 40, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 28, 0, 0, 0, 16
Offset: 16

Views

Author

Ilya Gutkovskiy, Feb 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; series(x*(1+add(b(n/d),
          d=numtheory[divisors](n) minus {1, n})), x, 5)
        end:
    a:= n-> coeff(b(n), x, 4):
    seq(a(n), n=16..112);  # Alois P. Heinz, Feb 22 2021
  • Mathematica
    b[n_] := b[n] = Series[x*(1 + Sum[b[n/d],
         {d, Divisors[n] ~Complement~ {1, n}}]), {x, 0, 5}];
    a[n_] := Coefficient[b[n], x, 4];
    Table[a[n], {n, 16, 112}] (* Jean-François Alcover, Feb 28 2022, after Alois P. Heinz *)

Formula

Dirichlet g.f.: (zeta(s) - 1)^4.
a(n) = 6 * A000005(n) - 4 * A007425(n) + A007426(n) - 4 for n > 1.