A341898 Numbers that are the sum of five fourth powers in exactly ten ways.
954979, 1205539, 1574850, 1713859, 1863859, 1877394, 1882579, 2071939, 2109730, 2225859, 2288179, 2419954, 2492434, 2495939, 2605314, 2711394, 2784499, 2835939, 2847394, 2880994, 2924674, 3007474, 3061939, 3071379, 3074179, 3117235, 3127219, 3174834, 3190899
Offset: 1
Keywords
Examples
954979 = 1^4 + 2^4 + 11^4 + 19^4 + 30^4 = 1^4 + 7^4 + 18^4 + 25^4 + 26^4 = 3^4 + 8^4 + 17^4 + 20^4 + 29^4 = 4^4 + 8^4 + 13^4 + 25^4 + 27^4 = 4^4 + 9^4 + 10^4 + 11^4 + 31^4 = 6^4 + 6^4 + 15^4 + 21^4 + 29^4 = 7^4 + 10^4 + 18^4 + 19^4 + 29^4 = 11^4 + 11^4 + 20^4 + 22^4 + 27^4 = 16^4 + 17^4 + 17^4 + 24^4 + 25^4 = 18^4 + 19^4 + 20^4 + 23^4 + 23^4 so 954979 is a term.
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 5): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 10]) for x in range(len(rets)): print(rets[x])
Comments