cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A341892 Numbers that are the sum of five fourth powers in exactly nine ways.

Original entry on oeis.org

619090, 775714, 1100579, 1179379, 1186834, 1243699, 1357315, 1367539, 1373859, 1422595, 1431234, 1436419, 1511299, 1536019, 1699234, 1734899, 1839874, 1858594, 1880850, 1950355, 1951650, 1978915, 2044819, 2052899, 2069955, 2085139, 2101779, 2119459, 2133234
Offset: 1

Views

Author

David Consiglio, Jr., Jun 04 2021

Keywords

Comments

Differs from A341781 at term 3 because
954979 = 1^4 + 2^4 + 11^4 + 19^4 + 30^4
= 1^4 + 7^4 + 18^4 + 25^4 + 26^4
= 3^4 + 8^4 + 17^4 + 20^4 + 29^4
= 4^4 + 8^4 + 13^4 + 25^4 + 27^4
= 4^4 + 9^4 + 10^4 + 11^4 + 31^4
= 6^4 + 6^4 + 15^4 + 21^4 + 29^4
= 7^4 + 10^4 + 18^4 + 19^4 + 29^4
= 11^4 + 11^4 + 20^4 + 22^4 + 27^4
= 16^4 + 17^4 + 17^4 + 24^4 + 25^4
= 18^4 + 19^4 + 20^4 + 23^4 + 23^4.

Examples

			619090 =  1^4 +  2^4 + 18^4 + 22^4 + 23^4
       =  1^4 +  3^4 +  4^4 +  8^4 + 28^4
       =  1^4 + 11^4 + 14^4 + 22^4 + 24^4
       =  2^4 +  2^4 +  8^4 + 17^4 + 27^4
       =  2^4 + 13^4 + 13^4 + 18^4 + 26^4
       =  3^4 +  6^4 + 12^4 + 16^4 + 27^4
       =  4^4 + 12^4 + 14^4 + 23^4 + 23^4
       =  9^4 + 12^4 + 16^4 + 21^4 + 24^4
       = 14^4 + 16^4 + 18^4 + 19^4 + 23^4
so 619090 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A345822 Numbers that are the sum of six fourth powers in exactly ten ways.

Original entry on oeis.org

122915, 151556, 161475, 162755, 173075, 183620, 185315, 199106, 199940, 201875, 202275, 204275, 204340, 204595, 206115, 207395, 209795, 211075, 213731, 217826, 217891, 218515, 221250, 223955, 224180, 225875, 226595, 227186, 228035, 236195, 237796, 237890
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345567 at term 8 because 197795 = 1^4 + 2^4 + 5^4 + 6^4 + 16^4 + 19^4 = 1^4 + 2^4 + 7^4 + 11^4 + 12^4 + 20^4 = 1^4 + 2^4 + 10^4 + 12^4 + 17^4 + 17^4 = 2^4 + 4^4 + 7^4 + 9^4 + 13^4 + 20^4 = 2^4 + 11^4 + 13^4 + 14^4 + 15^4 + 16^4 = 3^4 + 6^4 + 6^4 + 9^4 + 13^4 + 20^4 = 3^4 + 6^4 + 7^4 + 14^4 + 15^4 + 18^4 = 4^4 + 9^4 + 11^4 + 12^4 + 15^4 + 18^4 = 7^4 + 7^4 + 14^4 + 14^4 + 15^4 + 16^4.

Examples

			151556 is a term because 151556 = 1^4 + 2^4 + 2^4 + 9^4 + 11^4 + 19^4 = 1^4 + 2^4 + 3^4 + 7^4 + 16^4 + 17^4 = 1^4 + 8^4 + 11^4 + 12^4 + 13^4 + 17^4 = 2^4 + 3^4 + 7^4 + 8^4 + 11^4 + 19^4 = 3^4 + 3^4 + 3^4 + 4^4 + 12^4 + 19^4 = 3^4 + 4^4 + 11^4 + 11^4 + 14^4 + 17^4 = 3^4 + 4^4 + 13^4 + 13^4 + 13^4 + 16^4 = 4^4 + 6^4 + 9^4 + 9^4 + 9^4 + 19^4 = 4^4 + 7^4 + 11^4 + 11^4 + 11^4 + 18^4 = 4^4 + 8^4 + 9^4 + 13^4 + 13^4 + 17^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A341897 Numbers that are the sum of five fourth powers in ten or more ways.

Original entry on oeis.org

954979, 1205539, 1574850, 1713859, 1801459, 1863859, 1877394, 1882579, 2071939, 2109730, 2138419, 2142594, 2157874, 2225859, 2288179, 2419954, 2492434, 2495939, 2605314, 2663539, 2711394, 2784499, 2835939, 2847394, 2849859, 2880994, 2919154, 2924674, 3007474
Offset: 1

Views

Author

David Consiglio, Jr., Jun 04 2021

Keywords

Examples

			954979 =  1^4 +  2^4 + 11^4 + 19^4 + 30^4
       =  1^4 +  7^4 + 18^4 + 25^4 + 26^4
       =  3^4 +  8^4 + 17^4 + 20^4 + 29^4
       =  4^4 +  8^4 + 13^4 + 25^4 + 27^4
       =  4^4 +  9^4 + 10^4 + 11^4 + 31^4
       =  6^4 +  6^4 + 15^4 + 21^4 + 29^4
       =  7^4 + 10^4 + 18^4 + 19^4 + 29^4
       = 11^4 + 11^4 + 20^4 + 22^4 + 27^4
       = 16^4 + 17^4 + 17^4 + 24^4 + 25^4
       = 18^4 + 19^4 + 20^4 + 23^4 + 23^4
so 954979 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 10])
    for x in range(len(rets)):
        print(rets[x])

A344929 Numbers that are the sum of four fourth powers in exactly ten ways.

Original entry on oeis.org

592417938, 806692194, 940415058, 980421939, 1269819378, 1355899923, 1488645939, 1599073938, 1635878754, 1657885698, 1666044963, 1758151458, 1797373314, 1813434483, 1991146899, 2064726483, 2198975058, 2246905683, 2266525314, 2302589298, 2302698258, 2502041283
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Comments

Differs from A344928 at term 2 because 677125218 = 2^4 + 109^4 + 111^4 + 140^4 = 21^4 + 98^4 + 119^4 + 140^4 = 27^4 + 94^4 + 121^4 + 140^4 = 28^4 + 35^4 + 42^4 + 161^4 = 34^4 + 89^4 + 123^4 + 140^4 = 36^4 + 98^4 + 109^4 + 145^4 = 44^4 + 75^4 + 128^4 + 139^4 = 49^4 + 77^4 + 126^4 + 140^4 = 61^4 + 66^4 + 127^4 + 140^4 = 70^4 + 119^4 + 119^4 + 126^4 = 75^4 + 76^4 + 98^4 + 151^4.

Examples

			592417938 is a term because 592417938 = 6^4 + 59^4 + 65^4 + 154^4  = 7^4 + 11^4 + 20^4 + 156^4  = 10^4 + 17^4 + 17^4 + 156^4  = 12^4 + 112^4 + 115^4 + 127^4  = 15^4 + 86^4 + 107^4 + 142^4  = 21^4 + 49^4 + 70^4 + 154^4  = 25^4 + 107^4 + 112^4 + 132^4  = 26^4 + 45^4 + 71^4 + 154^4  = 28^4 + 105^4 + 112^4 + 133^4  = 63^4 + 77^4 + 112^4 + 140^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 10])
    for x in range(len(rets)):
        print(rets[x])

Extensions

More terms from Sean A. Irvine, Jun 03 2021

A345188 Numbers that are the sum of five third powers in exactly ten ways.

Original entry on oeis.org

5860, 6588, 6651, 6859, 6947, 8056, 8289, 8569, 8758, 9045, 9099, 9227, 9414, 9612, 9829, 10009, 10277, 10485, 10522, 10529, 10800, 10963, 10970, 11008, 11061, 11089, 11241, 11385, 11458, 11656, 11719, 11782, 11817, 11845, 11934, 11990, 12016, 12060, 12088
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Comments

Differs from A345187 at term 8 because 8371 = 1^3 + 1^3 + 11^3 + 11^3 + 16^3 = 1^3 + 4^3 + 5^3 + 12^3 + 17^3 = 1^3 + 8^3 + 9^3 + 11^3 + 16^3 = 3^3 + 3^3 + 4^3 + 15^3 + 15^3 = 3^3 + 3^3 + 8^3 + 8^3 + 18^3 = 3^3 + 3^3 + 3^3 + 5^3 + 19^3 = 3^3 + 7^3 + 9^3 + 9^3 + 17^3 = 4^3 + 6^3 + 6^3 + 11^3 + 17^3 = 5^3 + 9^3 + 10^3 + 11^3 + 15^3 = 6^3 + 6^3 + 12^3 + 13^3 + 13^3 = 8^3 + 8^3 + 9^3 + 9^3 + 16^3.

Examples

			6588 is a term because 6588 = 1^3 + 3^3 + 5^3 + 7^3 + 17^3  = 1^3 + 4^3 + 6^3 + 13^3 + 14^3  = 1^3 + 5^3 + 8^3 + 8^3 + 16^3  = 1^3 + 10^3 + 10^3 + 11^3 + 12^3  = 2^3 + 2^3 + 9^3 + 12^3 + 14^3  = 2^3 + 3^3 + 8^3 + 11^3 + 15^3  = 3^3 + 8^3 + 8^3 + 11^3 + 14^3  = 3^3 + 3^3 + 5^3 + 10^3 + 16^3  = 5^3 + 5^3 + 8^3 + 10^3 + 15^3  = 8^3 + 9^3 + 10^3 + 10^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 10])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-5 of 5 results.